Как работает сеть мобильной связи. Как работают сотовые сети? Принцип работы радиосвязи

17.09.2023

При совершении звонка или приеме вызова, телефон абонента устанавливает соединение по радиоканалу с одной из антенн близлежащей базовой станции (BS - Base Station). В систему сотовой связи GSM входит набор базовых станций, каждая из которых может включать в себя 1-12 приемо-передающих антенн. Для обеспечения качественной связи в радиусе своего действия антенны имеют разностороннюю направленность. Антенны представляют собой прямоугольные конструкции, которые можно увидеть на специальных мачтах либо на крышке высотных зданий. Такие антенны вырабатывают сигналы и передают их по специальному кабелю в управляющий блок BS. Базовая станция представляет собой совокупность антенн и управляющего блока. Существуют территории, которые могут обслуживаться сразу несколькими базовыми станциями, подключенными к контроллеру локальной зоны (LAC - Local Area Controller). Один контроллер может объединять до 15 базовых станций на определенной территории. Контроллеры локальной зоны коммутируются с Центром управления мобильными услугами (MSC - Mobile services Switching Center, или проще «коммутатор»), который, в свою очередь, имеет входные и выходные соединения с любыми действующими видами сотовой и проводной связи. Региональные сотовые сети стандарта GSM могут использовать всего один центр управления мобильными услугами. В то же время, крупные операторы мобильной связи (например, МТС, Билайн или Мегафон), имеющие несколько миллионов абонентов, используют несколько объединенных между собой центров MSC.

Чтобы понять иерархию столь сложной системы, необходимо использовать значение технического термина handover (хэндовер), который обозначает функцию передачи обслуживания абонента в сотовых сетях по эстафетному принципу. Это означает, что если клиент перемещается по улице и одновременно разговаривает по телефону, то для сохранения непрерывности разговора необходимо осуществлять своевременное переключение телефона абонента из одного сектора (соты) базовой станции в другой, а также из сферы контроля одной BS либо LAC в другую и т.д. Поэтому, если бы использовалось прямое подключение секторов базовых станций к коммутатору, то, несмотря на обилие других задач, последнему пришлось бы самостоятельно осуществлять процедуру хэндовера для всех существующих абонентов. Для обеспечения равномерной загрузки оборудования и снижения вероятности его отказов от перегрузок, схема организации мобильных сетей GSM построена по многоуровневому принципу. Другими словами, при перемещении абонента из зоны действия одного сектора базовой станции в зону действия другого, переключение осуществляет блок управления данной BS, при этом «вышестоящие» по иерархии устройства LAC или MSC не задействуются. Аналогично, при хэндовере между разными базовыми станциями, работает уже LAC и т. д.

Коммутатор выполняют те же функции, что и АТС в проводных сетях, и является главным управляющим устройством сетей GSM. Центр услуг мобильной связи определяет адресатов звонка, регулирует функционирование дополнительных услуг и непосредственно решает, имеете ли абонент право на осуществление звонка в данный момент времени. Итак, вы нажали «волшебную кнопку» и ваш телефон включился. На SIM-карте, которая располагается в телефоне абонента, находится специальный номер IMSI (International Subscriber Identification Number), что означает «Международный опознавательный номер абонента». IMSI является уникальным номером для всех существующих мобильных сетей во всем мире, по которому мобильные операторы однозначно идентифицируют абонентов. В момент нажатия кнопки питания телефона он отправляет код IMSI на базовую станцию, которая, в свою очередь, передает его сначала на LAC, а тот еще дальше по иерархии на коммутатор. При этом в процессе принимают участие еще два дополнительных устройства - HLR (Home Location Register) и VLR (Visitor Location Register), которые связаны непосредственно с коммутатором. HLR обозначает «Регистр домашних абонентов» и хранит коды IMSI всех абонентов собственной сети, а VLR («Регистр гостевых абонентов») содержит информацию о всех абонентах, которые используют сеть этого мобильного оператора в конкретный момент времени.

При передаче кода IMSI в HLR используется система шифрования, которую обеспечивает AuC (Центр аутентификации). Изначально HLR проверяет наличие в своей базе абонента с данным номером, а в случае наличия - имеет ли абонент право на пользование услугами сети в данный момент, или же, к примеру, в данный момент имеет финансовую блокировку. Если проверка закончилась положительно для абонента, его номер перенаправляется в VLR, после чего клиент может совершать звонки или пользоваться другими услугами сотовой связи.

Таким образом, мы поверхностно рассмотрели основной принцип работы сотовых сетей GSM, т.к. более углубленное описание технических деталей во много раз объемнее и при этом менее понятно для большинства читателей.

Телефонная связь – это передача речевой информации на дальние расстояния. С помощью телефонии люди имеют возможность общаться в режиме реального времени.

Если в момент возникновения технологии способ передачи данных существовал только один – аналоговый, то в настоящий момент успешно применяются самые разные системы коммуникации. Телефонная, спутниковая и мобильная связь, а также IP-телефония обеспечивают надёжный контакт между абонентами, будь они даже в разных концах земного шара. Как работает телефонная связь при использовании каждого из методов?

Старая добрая проводная (аналоговая) телефония

Под термином «телефонная» связь чаще всего понимают связь аналоговую, способ передачи данных, ставший привычными за без малого полтора столетия. При использовании такой , информация передаётся непрерывно, без промежуточной кодировки.

Соединение двух абонентов регулируется набором номера, а затем общение ведётся посредством передачи сигнала от человека к человеку по проводам в самом буквальном смысле этого слова. Соединяют абонентов уже не телефонистки, а роботы, что значительно упростило и удешевило процесс, однако принцип работы аналоговых сетей связи остался прежним.

Мобильная (сотовая) связь

Абоненты операторов сотовой связи ошибочно считают, что «перерезали провод», соединяющий их с телефонными станциями. С виду всё так и есть – человек может передвигаться куда угодно (в рамках покрытия сигналом), не прерывая разговор и не теряя контакт с собеседником, да и <подключить телефонную связь стало легче и проще.

Однако если разобраться, как работает мобильная связь, мы обнаружим не так уж много отличий от работы аналоговых сетей. Сигнал на самом деле «витает в воздухе», вот только от телефона звонящего он попадает на приёмопередатчик, который, в свою очередь, связывается с ближайшим к вызываемому абоненту аналогичным оборудованием…посредством оптиковолоконных сетей.

Этап радиопередачи данных охватывает лишь путь сигнала от телефона к ближайшей базовой станции, которая связана с другими коммуникационными сетями вполне традиционным способом. Как работает сотовая связь, ясно. Каковы же её плюсы и минусы?

Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Путь сотового сигнала

Рассмотрим подробнее, каким именно способом сигнал достигает вызываемого абонента.

  1. Пользователь набирает номер.
  2. Его телефон устанавливает радиосвязь с ближайшей базовой станцией. Они расположены на высотных домах, промышленных сооружениях и вышках. Каждая станция состоит из приемо-передающих антенн (от 1 до 12) и блока управления. Базовые станции, которые обслуживают одну территорию, соединены с контроллером.
  3. От блока управления базовой станции сигнал по кабелю передается на контроллер, а оттуда, тоже по кабелю, - на коммутатор. Это устройство обеспечивает вход и выход сигнала на различные линии связи: междугородней, городской, международной, других мобильных операторов. В зависимости от размеров сети в ней могут быть задействованы как один, так и несколько коммутаторов, соединенных между собой при помощи проводов.
  4. От «своего» коммутатора сигнал по высокоскоростным кабелям передается на коммутатор другого оператора, причем последний легко определяет, в зоне действия какого контроллера находится абонент, которому адресован звонок.
  5. Коммутатор вызывает нужный контроллер, тот пересылает сигнал на базовую станцию, которая «опрашивает» мобильный телефон.
  6. Вызываемому абоненту поступает входящий звонок.

Такая многослойная структура сети позволяет равномерно распределить нагрузку между всеми ее узлами. Тем самым уменьшается вероятность отказа оборудования и обеспечивается бесперебойная связь.

Как работает сотовая связь, ясно. Каковы же её плюсы и минусы? Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Спутниковая связь

Давайте посмотрим, как работает спутниковая связь, высшая на сегодняшний день ступень развития радиорелейной связи. Ретранслятор, помещённый на орбиту, способен охватывать огромную площадь поверхности планеты в одиночку. Сеть базовых станций, как в случае с сотовой связью, уже не нужна.

Абонент–физическое лицо получает возможность путешествовать практически без ограничений, оставаясь на связи даже в тайге или в джунглях. Абонент–лицо юридическое может привязать к одной антенне-ретранслятору (это ставшая уже привычной «тарелка») целую мини-АТС, однако при этом следует учитывать объём входящих и исходящих, а также размер файлов, которые необходимо переслать.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи.
  • если что-то физически сломалось на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности, растянется очень надолго.
  • стоимость услуг связи без границ чаще всего превышает более привычные счета. Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

Спутниковая связь: за и против

Главная особенность «спутника» состоит в том, что он обеспечивает абонентам независимость от наземных линий связи. Преимущества такого подхода очевидны. К ним относятся:

  • мобильность оборудования. Его можно развернуть в очень короткие сроки;
  • возможность быстро создавать обширные сети, охватывающие большие территории;
  • связь с труднодоступными и отдаленными территориями;
  • резервирование каналов, которые можно задействовать в случае поломки наземной связи;
  • гибкость технических характеристик сети, позволяющих адаптировать ее практически под любые требования.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи;
  • если что-то физически вышло со строя на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности системы, растянется надолго;
  • стоимость услуг связи без границ чаще всего превышает более привычные счета.

Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году продемонстрировал способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей Знакомство с OsmocomBB , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний! Добавить метки

Сети GSM. Взгляд изнутри.

Немного истории

На заре развития мобильной связи (а было это не так давно - в начале восьмидесятых) Европа покрывалась аналоговыми сетями самых разных стандартов - Скандинавия развивала свои системы, Великобритания свои… Сейчас уже сложно сказать, кто был инициатором последовавшей очень скоро революции - "верхи" в виде производителей оборудования, вынужденные разрабатывать для каждой сети собственные устройства, или "низы" в качестве пользователей, недовольные ограниченной зоной действия своего телефона. Так или иначе, в 1982 году Европейской Комиссией по Телекоммуникациям (CEPT) была создана специальная группа для разработки принципиально новой, общеевропейской системы мобильной связи. Основными требованиями, предъявляемыми к новому стандарту, были: эффективное использование частотного спектра, возможность автоматического роуминга, повышенное качество речи и защиты от несанкционированного доступа по сравнению с предшествующими технологиями, а также, очевидно, совместимость с другими существующими системами связи (в том числе проводными) и тому подобное.

Плодом упорного труда многих людей из разных стран (честно говоря, мне даже страшно представить себе объем проделанной ими работы!) стала представленная в 1990 году спецификация общеевропейской сети мобильной связи, названная Global System for Mobile Communications или просто GSM. А дальше все замелькало, как в калейдоскопе - первый оператор GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков, а к концу 1995 их число увеличилось до 10 миллионов! Воистину, "GSM шагает по планете" - в настоящее время телефоны этого стандарта имеют около 200 миллионов человек, а GSM-сети можно найти по всему миру.

Давайте же попробуем разобраться, как организованы и на каких принципах функционируют сети GSM. Сразу скажу, что задача предстоит не из легких, однако, поверьте - в результате мы получим истинное наслаждение от красоты технических решений, используемых в этой системе связи.

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Начнем с самого сложного и, пожалуй, скучного - рассмотрения скелета (или, как принято говорить на военной кафедре моего Alma Mater, блок-схемы) сети. При описании я буду придерживаться принятых во всем мире англоязычных сокращений, конечно, давая при этом их русскую трактовку.

Взгляните на рис. 1:

Рис.1 Упрощенная архитектура сети GSM.

Самая простая часть структурной схемы - переносной телефон, состоит из двух частей: собственно "трубки" - МЕ (Mobile Equipment - мобильное устройство) и смарт-карты SIM (Subscriber Identity Module - модуль идентификации абонента), получаемой при заключении контракта с оператором. Как любой автомобиль снабжен уникальным номером кузова, так и сотовый телефон имеет собственный номер - IMEI (International Mobile Equipment Identity - международный идентификатор мобильного устройства), который может передаваться сети по ее запросу (более подробно про IMEI можно узнать ). SIM , в свою очередь, содержит так называемый IMSI (International Mobile Subscriber Identity - международный идентификационный номер подписчика). Думаю, разница между IMEI и IMSI ясна - IMEI соответствует конкретному телефону, а IMSI - определенному абоненту.

"Центральной нервной системой" сети является NSS (Network and Switching Subsystem - подсистема сети и коммутации), а компонент, выполняющей функции "мозга" называется MSC (Mobile services Switching Center - центр коммутации). Именно последний всуе называют (иногда с придыханием) "коммутатор", а также, при проблемах со связью, винят во всех смертных грехах. MSC в сети может быть и не один (в данном случае очень уместна аналогия с многопроцессорными компьютерными системами) - например, на момент написания статьи московский оператор Билайн внедрял второй коммутатор (производства Alcatel). MSC занимается маршрутизацией вызовов, формированием данных для биллинговой системы, управляет многими процедурами - проще сказать, что НЕ входит в обязанности коммутатора, чем перечислять все его функции.

Следующими по важности компонентами сети, также входящими в NSS , я бы назвал HLR (Home Location Register - реестр собственных абонентов) и VLR (Visitor Location Register - реестр перемещений). Обратите внимание на эти части, в дальнейшем мы будем часто упоминать их. HLR , грубо говоря, представляет собой базу данных обо всех абонентах, заключивших с рассматриваемой сетью контракт. В ней хранится информация о номерах пользователей (под номерами подразумеваются, во-первых, упоминавшийся выше IMSI , а во-вторых, так называемый MSISDN -Mobile Subscriber ISDN, т.е. телефонный номер в его обычном понимании), перечень доступных услуг и многое другое - далее по тексту часто будут описываться параметры, находящиеся в HLR .

В отличие от HLR , который в системе один, VLR `ов может быть и несколько - каждый из них контролирует свою часть сети. В VLR содержатся данные об абонентах, которые находятся на его (и только его!) территории (причем обслуживаются не только свои подписчики, но и зарегистрированные в сети роумеры). Как только пользователь покидает зону действия какого-то VLR , информация о нем копируется в новый VLR , а из старого удаляется. Фактически, между тем, что есть об абоненте в VLR и в HLR , очень много общего - посмотрите таблицы, где приведен перечень долгосрочных (табл.1) и временных (табл.2 и 3) данных об абонентах, хранящихся в этих реестрах. Еще раз обращаю внимание читателя на принципиальное отличие HLR от VLR : в первом расположена информация обо всех подписчиках сети, независимо от их местоположения, а во втором - данные только о тех, кто находится на подведомственной этому VLR территории. В HLR для каждого абонента постоянно присутствует ссылка на тот VLR , который с ним (абонентом) сейчас работает (при этом сам VLR может принадлежать чужой сети, расположенной, например, на другом конце Земли).

1. Международный идентификационный номер подписчика (IMSI )
2. Телефонный номер абонента в обычном смысле (MSISDN )
3. Категория подвижной станции
4. Ключ идентификации абонента (Ki )
5. Виды обеспечения дополнительными услугами
6. Индекс закрытой группы пользователей
7. Код блокировки закрытой группы пользователей
8. Состав основных вызовов, которые могут быть переданы
9. Оповещение вызывающего абонента
10. Идентификация номера вызываемого абонента
11. График работы
12. Оповещение вызываемого абонента
13. Контроль сигнализации при соединении абонентов
14. Характеристики закрытой группы пользователей
15. Льготы закрытой группы пользователей
16. Запрещенные исходящие вызовы в закрытой группе пользователей
17. Максимальное количество абонентов
18. Используемые пароли
19. Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR .
1. Параметры идентификации и шифрования
2. Временный номер мобильного абонента (TMSI )
3. Адрес реестра перемещения, в котором находится абонент (VLR )
4. Зоны перемещения подвижной станции
5. Номер соты при эстафетной передаче
6. Регистрационный статус
7. Таймер отсутствия ответа
8. Состав используемых в данный момент паролей
9. Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR .
Таблица 3. Полный состав временных данных, хранимых в VLR .

NSS содержит еще два компонента - AuC (Authentication Center - центр авторизации) и EIR (Equipment Identity Register - реестр идентификации оборудования). Первый блок используется для процедур установления подлинности абонента, а второй, как следует из названия, отвечает за допуск к эксплуатации в сети только разрешенных сотовых телефонов. Подробно работа этих систем будет рассмотрена в следующем разделе, посвященном регистрации абонента в сети.

Исполнительной, если так можно выразиться, частью сотовой сети, является BSS (Base Station Subsystem - подсистема базовых станций). Если продолжать аналогию с человеческим организмом, то эту подсистему можно назвать конечностями тела. BSS состоит из нескольких "рук" и "ног" - BSC (Base Station Controller - контроллер базовых станций), а также множества "пальцев" - BTS (Base Transceiver Station - базовая станция). Базовые станции можно наблюдать повсюду - в городах, полях (чуть не сказал "и реках") - фактически это просто приемно-передающие устройства, содержащие от одного до шестнадцати излучателей. Каждый BSC контролирует целую группу BTS и отвечает за управление и распределение каналов, уровень мощности базовых станций и тому подобное. Обычно BSC в сети не один, а целое множество (базовых станций же вообще сотни).

Управляется и координируется работа сети с помощью OSS (Operating and Support Subsystem - подсистема управления и поддержки). OSS состоит из всякого рода служб и систем, контролирующих работу и трафик - дабы не перегружать читателя информацией, работа OSS ниже рассматриваться не будет.

Регистрация в сети.

При каждом включении телефона после выбора сети начинается процедура регистрации. Рассмотрим наиболее общий случай - регистрацию не в домашней, а в чужой, так называемой гостевой, сети (будем предполагать, что услуга роуминга абоненту разрешена).

Пусть сеть найдена. По запросу сети телефон передает IMSI абонента. IMSI начинается с кода страны "приписки" его владельца, далее следуют цифры, определяющие домашнюю сеть, а уже потом - уникальный номер конкретного подписчика. Например, начало IMSI 25099… соответствует российскому оператору Билайн. (250-Россия, 99 - Билайн). По номеру IMSI VLR гостевой сети определяет домашнюю сеть и связывается с ее HLR . Последний передает всю необходимую информацию об абоненте в VLR , который сделал запрос, а у себя размещает ссылку на этот VLR , чтобы в случае необходимости знать, "где искать" абонента.

Очень интересен процесс определения подлинности абонента. При регистрации AuC домашней сети генерирует 128-битовое случайное число - RAND, пересылаемое телефону. Внутри SIM с помощью ключа Ki (ключ идентификации - так же как и IMSI , он содержится в SIM ) и алгоритма идентификации А3 вычисляется 32-битовый ответ - SRES (Signed RESult) по формуле SRES = Ki * RAND. Точно такие же вычисления проделываются одновременно и в AuC (по выбранному из HLR Ki пользователя). Если SRES , вычисленный в телефоне, совпадет со SRES , рассчитанным AuC , то процесс авторизации считается успешным и абоненту присваивается TMSI (Temporary Mobile Subscriber Identity-временный номер мобильного абонента). TMSI служит исключительно для повышения безопасности взаимодействия подписчика с сетью и может периодически меняться (в том числе при смене VLR ).

Теоретически, при регистрации должен передаваться и номер IMEI , но у меня есть большие сомнения насчет того, что московские операторы отслеживают IMEI используемых абонентами телефонов. Давайте будем рассматривать некую "идеальную" сеть, функционирующую так, как было задумано создателями GSM. Так вот, при получении IMEI сетью, он направляется в EIR , где сравнивается с так называемыми "списками" номеров. Белый список содержит номера санкционированных к использованию телефонов, черный список состоит из IMEI , украденных или по какой-либо иной причине не допущенных к эксплуатации телефонов, и, наконец, серый список - "трубки" с проблемами, работа которых разрешается системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR с домашним HLR запускается счетчик времени, задающий момент перерегистрации в случае отсутствия каких-либо сеансов связи. Обычно период обязательной регистрации составляет несколько часов. Перерегистрация необходима для того, чтобы сеть получила подтверждение, что телефон по-прежнему находится в зоне ее действия. Дело в том, что в режиме ожидания "трубка" только отслеживает сигналы, передаваемые сетью, но сама ничего не излучает - процесс передачи начинается только в случае установления соединения, а также при значительных перемещениях относительно сети (ниже это будет рассмотрено подробно) - в таких случаях таймер, отсчитывающий время до следующей перерегистрации, запускается заново. Поэтому при "выпадении" телефона из сети (например, был отсоединен аккумулятор, или владелец аппарата зашел в метро, не выключив телефон) система об этом не узнает.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM . Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM ). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover .

Как уже было сказано, сеть состоит из множества BTS - базовых станций (одна BTS - одна "сота", ячейка). Для упрощения функционирования системы и снижения служебного трафика, BTS объединяют в группы - домены, получившие название LA (Location Area - области расположения). Каждой LA соответствует свой код LAI (Location Area Identity). Один VLR может контролировать несколько LA . И именно LAI помещается в VLR для задания местоположения мобильного абонента. В случае необходимости именно в соответствующей LA (а не в отдельной соте, заметьте) будет произведен поиск абонента. При перемещении абонента из одной соты в другую в пределах одной LA перерегистрация и изменение записей в VLR /HLR не производится, но стоит ему (абоненту) попасть на территорию другой LA , как начнется взаимодействие телефона с сетью. Каждому пользователю, наверное, не раз приходилось слышать периодические помехи (типа хрюк-хрюк---хрюк-хрюк---хрюк-хрюк:-)) в музыкальной системе своего автомобиля от находящегося в режиме ожидания телефона - зачастую это является следствием проводимой перерегистрации при пересечении границ LA . При смене LA код старой области стирается из VLR и заменяется новым LAI , если же следующий LA контролируется другим VLR , то произойдет смена VLR и обновление записи в HLR .

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA , что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Теперь рассмотрим очень красивый алгоритм так называемого handover `ра (такое название получила смена используемого канала в процессе соединения). Во время разговора по мобильному телефону вследствие ряда причин (удаление "трубки" от базовой станции, многолучевая интерференция, перемещение абонента в зону так называемой тени и т.п.) мощность (и качество) сигнала может ухудшиться. В этом случае произойдет переключение на канал (может быть, другой BTS ) с лучшим качеством сигнала без прерывания текущего соединения (добавлю - ни сам абонент, ни его собеседник, как правило, не замечают произошедшего handover `а). Handover`ы принято разделять на четыре типа:

  • смена каналов в пределах одной базовой станции
  • смена канала одной базовой станции на канал другой станции, но находящейся под патронажем того же BSC .
  • переключение каналов между базовыми станциями, контролируемыми разными BSC , но одним MSC
  • переключение каналов между базовыми станциями, за которые отвечают не только разные BSC , но и MSC .

В общем случае, проведение handover `а - задача MSC . Но в двух первых случаях, называемых внутренними handover `ами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC , а MSC лишь информируется о происшедшем.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover `а:

  • "Режим наименьших переключений" (Minimum acceptable performance). В этом случае, при ухудшении качества связи мобильный телефон повышает мощность своего передатчика до тех пор, пока это возможно. Если же, несмотря на повышение уровня сигнала, связь не улучшается (или мощность достигла максимума), то происходит handover .
  • "Энергосберегающий режим" (Power budget). При этом мощность передатчика мобильного телефона остается неизменной, а в случае ухудшения качества меняется канал связи (handover ).

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC , например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов "находит" нужный коммутатор по набранному номеру мобильного абонента MSISDN , который содержит код страны и сети).


Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

MSC пересылает в HLR номер (MSISDN ) абонента. HLR , в свою очередь, обращается с запросом к VLR гостевой сети, в которой находится абонент. VLR выделяет один из имеющихся в ее распоряжении MSRN (Mobile Station Roaming Number - номер "блуждающей" мобильной станции). Идеология назначения MSRN очень напоминает динамическое присвоение адресов IP при коммутируемом доступе в Интернет через модем. HLR домашней сети получает от VLR присвоенный абоненту MSRN и, сопроводив его IMSI пользователя, передает коммутатору домашней сети. Заключительной стадией установления соединения является направление вызова, сопровождаемого IMSI и MSRN , коммутатору гостевой сети, который формирует специальный сигнал, передаваемый по PAGCH (PAGer CHannel - канал вызова) по всей LA , где находится абонент.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Конечно, в мире нет ничего идеального. Рассмотренные выше сотовые системы GSM не исключение. Ограниченное число каналов создает проблемы в деловых центрах мегаполисов (а в последнее время, ознаменованное бурным ростом абонентской базы, и на их окраинах) - чтобы позвонить, часто приходится ждать уменьшения нагрузки системы. Малая, по современным меркам, скорость передачи данных (9600 бит/с) не позволяет пересылать объемные файлы, не говоря о видеоматериалах. Да и роуминговые возможности не так уж безграничны - Америка и Япония развивают свои, несовместимые с GSM, цифровые системы беспроводной связи.

Конечно, рано говорить, что дни GSM сочтены, но нельзя и не замечать появления на горизонте так называемых 3G -систем, олицетворяющих начало новой эры в развитии сотовой телефонии и лишенных перечисленных недостатков. Как хочется заглянуть на несколько лет вперед и посмотреть, какие возможности получим все мы от новых технологий! Впрочем, ждать осталось не так долго - начало коммерческой эксплуатации первой сети третьего поколения намечается на начало 2001 года… А вот какая судьба уготована новым системам - взрывообразный рост, как GSM, или разорение и уничтожение, как Iridium, покажет время…

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.