Направленный ответвитель из коаксиального кабеля. Устройство радиочастотных НО

10.09.2021
ПРЕДИСЛОВИЕ

Во время моих экспериментов на УКВ и нижних СВЧ диапазонах, я столкнулся с проблемой точного измерения КСВ. Коммерческие КСВ-метры редко доступны для этих диапазонов и либо недостаточно точны, либо слишком дороги. И решил я сделать мой собственный КСВ-метр. Но какой тип? Из моих предыдущих экспериментов с направленными ответвителями, я пришел к выводу, что планарные направленники не слишком подходят для этого применения.

Они имеют много недостатков и их конструкция довольно сложна. Таким образом, попивая старопраменское, решил я, други мои, поискать в других местах. Идея КСВ-метра, который я собираюсь описать в этой статье, стянута у Пола G7EYT. Смотрите ссылку [Л.1].

ОБЩАЯ КОНЦЕПЦИЯ

Принципиальная схема КСВ-метра показана на Рис. 1. Можно видеть, что КСВ-метр состоит из трех основных частей: направленный ответвитель, два детектора и блок отображения.
Направленный ответвитель используется для оделения части мощности от падающей и отраженной волны.
Детекторы преобразуют эту высокочастотную энергию в постоянный ток, который отображается в блоке отображения. Все эти части описаны далее. Последующие разделы демонстрируют мою конструкцию КСВ-метра.

Направленный ответвитель сделан из двух отрезков полужесткого коаксиального кабеля с наружный диаметром 3.5 мм. Оба кабеля имеют продольные проточки, пропиленные в
экранирующем проводнике, так что внутренние проводники открыты.
Эти зазоры имеют 60 мм в длину и 1 мм в ширину (Paul использует проточку 30x2mm [Л.1]. Но его направленный ответвитель используется для ISM диапазона, так что, он половинной длины.) Обе линии сжаты и спаяны вместе таким образом, что зазоры перекрываются.

Это обеспечивает связь между двумя линиями, сохраняя при этом характеристический импеданс линий практически без изменений.
Также, коаксиальная концепция обеспечивает низкое излучение, хорошую передачу между разъёмами и собственно направленным ответвителем и, таким образом, обеспечит низкие вносимые потери и низкий входной и выходной коэффициенты отражения.

Детекторы также следуют концепции Павла [Л.1].
Единственное отличие состоит в типе используемых детекторных диодов. Можно сказать, что могут быть использованы практически любые СВЧ диоды Шоттки с низким напряжением барьера. Я использовал какой-то неизвестный тип из какого то связного прибора. Вы можете использовать корпус с двумя диодами (как у меня), два диода в разных корпусах или даже один диод, но у него чувствительность будет похуже.
Можно прикинуть по-грубому, что чувствительность однодиодного выпрямителя будет на 6дБ хуже (половина напряжения), чем в случае двухдиодного выпрямителя, что довольно ощутимо.

Кроме прочего, оба детектора должны использовать один и тот же тип детекторных диодов (полностью идентичные), чтобы обеспечить достоверность измерения.

Блок отображения :

В моей конструкции я использовал широкораспространённую концепцию двух стрелочных измерителей с потенциометром для подстройки чувствительности.
Измеритель, подключенный к детектору #1, показывает проходящую мощность, а измеритель, подключенный к детектору #2, показывает мощность отраженного сигнала. Если мы устанавливаем потенциометр так, чтобы измеритель проходящей мощности отклонился на полную шкалу, то второй измеритель (отраженная мощность) покажет нам непосредственно значение КСВ (второй прибор должен быть откалиброван для КСВ).

ИЗГОТОВЛЕНИЕ НАПРАВЛЕННОГО ОТВЕТВИТЕЛЯ

Направленный ответвитель выглядит простым, но его изготовление не так легко и однозначно. Я попытаюсь описать здесь некоторые советы и рекомендации.
Единственным подходящим типом кабеля для этого устройства является «полужесткий » коаксиальный кабель в медной трубке (semirigid).
Общедоступный более гибкий коаксиальный кабель (semiflexible) с пелетеной и лужёной внешней обкладкой, не подходит. Ибо, непросто будет его точить.

Прежде всего, вы должны подготовить обе части полужесткого кабеля. Отрезать куски кабеля на соответствующую длину (60 мм для участка связи + необходимую участок под разъёмы) и подготовить все четыре конца для пайки разъёмов.

Не паять разъёмы прямо сейчас, они будут охлаждать куски кабеля во время спайки кабелей в месте проточки.

Выровнять оба куска кабеля, отмерить 60 мм в середине для промежутков и подогнуть все концы. Довольно рискованно подгибать кабели после проточки - вы можете их легко
деформировать.

Затем спаяйте линии в середине (если вы используете алюминиевые коаксиалы, то применить паяльный флюс для алюминия), потом зажать все в тиски и проточить зазоры в середине. (чотта не догнал, как он себе представляет спаяные кабели точить).

Размеры проточек должны быть приблизительно 60x1mm, но по опыту моих измерений, это не строгое требование. Длина проточки должна быть от 50 до 70 мм, если вы хотите использовать диапазон от 144 до 1296MHz.

Ширина зазоров также не сильно критична. Если сделаете более широкие проточки, то внутренние проводники будут находиться на меньшем расстоянии друг от друга и получите более сильный коэффициент связи. Тогда КСВ-метр будет иметь бОльшую чувствительность и будет работать с более слабыми сигналами.

Небольшая окантовка по краям зазоров не влияет на конечные параметры.

После того, как обе щели проточены, можете спаять линии вместе. Позаботьтесь о хорошем перекрытии на участке проточки! Когда все собрано, припаять разъёмы.

Моя конструкция направленного ответвителя показана на рисунке 2.

ИЗГОТОВЛЕНИЕ ДЕТЕКТОРОВ

Как было сказано, я использовал SMA папу для связанной линии. А сами детекторы установлены на SMA мамы с фланцем. Таким путём вы можете легко снимать детекторы с
направленного ответвителя и делать какие-либо измерения, если соответствующие приборы доступны (полагаю, там is-if опечатка).

C1, C3, C5, C7: 100pF;
С2, С4, С6, С8: 560pF;
R 1, R 2, R 3, R 4: 100;
R 5, R 6, R 7, R 8: 10k;
переменник R9, R10: 22k / линейный / стерео.

Как я уже говорил ранее, я использовал какие попало неизвестные диоды Шоттки. Я так полагаю, что диоды типа BAT-15 будут работать точно также. Детектор показан на Рис 3.

МОДИФИКАЦИЯ СТАРОГО КСВ-МЕТРА

Я упаковал весь КСВ-метр в корпус от старого неиспользуемого покупного КСВ-метр. Да просто поиспользовал корпус вместе с двумя стрелочными индикаторами, которые были
откалиброваны в SWR. Мой вариант показан на рисунках 4 и 5.

ИЗМЕРЕННЫЕ ПАРАМЕТРЫ

26,5 дБ на 144 Мгц;
24,6 дБ на 432 Мгц;
19,4 дБ на 1296 МГц.

20,5 дБ на 144 Мгц;
-18,6 дБ на 432 МГц;
-13,4 дБ на 1296 Мгц

Это означает следующие (минимальные) показатели КСВ:

1,21 на 144 Мгц;
1,27 на 432 Мгц;
1,54 на 1296 Мгц.

До таких величин КСВ прибор будет показывать более-менее достоверно, но для меньших значений КСВ ошибка становится неприемлемой. (когда сильно хорошо, то привирает.)
На частотах выше 1,5 ГГц направленность становится слишком низкой, поэтому этот КСВ-метр не должен использоваться для частот выше 1.5ГГц. Если хотите использовать КСВ-метр на более высоких частотах, необходимо сделать направленный ответвитель с участком связи покороче (ну и, само собой, пересчитать детектор).

Положим, сопротивление стрелочного прибора находиться в диапазоне от 400 до 1000 Ом (вся шкала при 100uA), тогда напряжение порядка 60 мВ отклонит стрелку на всю шкалу.
На основании Таблицы 1, такое напряжение получим от сигнала мощностью -10dBm. Если далее принять во внимание Рис.6, то можем сделать вывод, что КСВ-метр
должен быть способен полноценно работать с проходной можностью начиная с величин:

35 дБм (~ 3 Вт) на 144 Мгц;
25 дБм(~ 0,3 Вт) на 432 Мгц;
22 дБм (~ 0,15 Вт) на 1296 МГц.

На деле, нижний порог повыше будет, например на 432 MГц начинает показывать с 1 Ватта (вместо 0.3 расчётных).

Что касается верхнего предела измеряемой мощности, то это определяется обратным напряжением диода, используемого в детекторах. Предположим, это значение будет 4V (пример для BAT-15), и если принять в рассмотрение таблицу 1, можно сделать вывод, что детектор может выдержать можность на входе примерно до 22dBm. Пересчитав эти 22dBm ко входу направленного ответвителя, получим (проходную):

66dBm (~ 4kW) на 144MHz,
57dBm (~500W) на 432 МГц и
54dBm (~ 250W) на 1296MHz.

Но сомнительно, что остальная часть КСВ-метра будет способна выдержать такую мощность (4кВт).

Обратите внимание, что все представленные расчеты являются только грубой оценкой. Дальнейшие измерения показывают, что вносимые потери КСВ-метра значительно ниже
0,2dB для частот до 1,8GHz и коэффициент отражения (направленника) лучше, чем -25 дБ для частот до 2 ГГц. Остальные результаты измерений можно найти по ссылке [Л.2].

ЗАКЛЮЧЕНИЕ

В данной статье описана конструкция простого КСВ-метра, который подходит для использования в основном УКВ и СВЧ частотах. По приведенным промерам видно, что этого
КСВ-метра вполне достаточно для любительских целей. Желаю удачи всем, кто решил этот КСВ-метр повторить.

73, Хонза OK1TIC

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

Www.frars.org.uk/cgi-bin/render.pl?pageid=1085
www.radioamater.cz или http://ok1tic.nagano.cz

Направленный ответвитель

Направленный ответвитель - устройство для ответвления части электромагнитной энергии из основного канала передачи во вспомогательный. Направленный ответвитель (НО) представляет собой два (иногда более) отрезка линий передачи, связанных между собой определённым образом, основная линия называется первичной, вспомогательная - вторичной. Для нормальной работы НО один из концов вторичной линии (нерабочее плечо) должен быть заглушен согласованной нагрузкой, со второго (рабочего плеча) снимается ответвлённый сигнал, в зависимости от того, какую волну в первичной линии надо ответвить - падающую или отражённую, выбирается, какое плечо вторичной линии будет рабочим. Математически свойства направленных ответвителей описываются с помощью S-матриц (матриц рассеяния).

Радиочастотные направленые ответвители являются обратимыми, то есть при подаче мощности на связанную линию, устройство работает как направленный инжектор (сумматор) мощности в основную линию.

Применение

Схема двунаправленного ответвителя с детекторами для измерения мощности падающей и отражённой волны в антенном фидере

Направленные ответвители широко применяются в разных отраслях радиоэлектроники, как в качестве самостоятельных устройств в кабельных и волноводных линиях, так и в качестве элементов радиоэлектронной аппаратуры. Как самостоятельные устройства НО используются для разветвления сигнала с линии (например, телевизионные разветвители) и для контроля параметров сигнала в линии и её согласования. Как элементы аппаратуры НО используются в основном в радиоизмерительных приборах - СВЧ ваттметрах , приборах для измерения КСВ , коэффициента передачи , установках для поверки аттенюаторов и измерения ослаблений , а также в других случаях.

Классификация

  • Радиочастотные направленные ответвители
    • Волноводные НО
    • Волноводно-коаксиальные НО
    • Волноводно-полосковые НО
    • Коаксиальные НО
    • Полосковые НО
    • Шлейфные НО
    • НО на сосредоточенных элементах
  • Оптические (волоконно-оптические) направленные ответвители

Устройство радиочастотных НО

Волноводные НО

Шлейфные НО

Шлейфные НО реализуются, обычно, в виде интегральных микросхем , они состоят из двух отрезков полосковых линий передачи, соединенных между собой с помощью двух и более шлейфов, длины и расстояния, между которыми равны четверти длины волны, определенной в полосковой линии передачи. С увеличением числа шлейфов направленность и диапазонные характеристики шлейфового, НО улучшается. Однако при числе шлейфов более трех их волновые сопротивления становятся настолько большими, что практически не могут быть реализованы в печатном исполнении. В связи с этим в ИС СВЧ наибольшее распространение получили двух - и трехшлейфные НО.

НО на сосредоточенных элементах

На метровых и более длинных волнах НО из отрезков линий передачи обычно не применяются из-за своей громоздкости, вместо них используются ответвители на сосредоточенных реактивных элементах. В этих ответвителях отрезки линий заменены четырёхполюсниками из реактивных сосредоточенных сопротивлений. В зависимости от схемы соединения элементов между собой такие ответвители могут быть эквивалентны шлейфным НО или НО на связанных линиях.

НО на диэлектрических волноводах

На миллиметровых и более коротких волнах НО из отрезков металлических волноводов применять не эффективно из-за узкой полосы пропускания, вместо них удобно использовать НО образованные двумя отрезками диэлектрических волноводов (ДВ), плавно сведенных на некоторое расстояние. Использование гибких диэлектриков позволяет делать такие НО с регулируемым коэфиициентом деления мощности в плечи (2)и (4) и фазовым сдвигом. А также эти НО отличаются, от НО на МВ очень высокой степенью развязки между входом (1) и выходом (3).

(1)---\ /---(2) \____/ /----\ (3)---/ \---(4)

Основные нормируемые характеристики

  • Переходное ослабление - логарифм отношения входной мощности основной линии к мощности, ответвленной в рабочее плечо вспомогательной линии
  • Направленность - логарифм отношения мощностей на выходе рабочего и нерабочего плеч вторичной линии
  • Развязка - логарифм отношения мощности на входе первичной линии к мощности в нерабочем плече вторичной линии
  • Коэффициент стоячей волны первичной и вторичной линии

Устройство оптических НО

См. также

Литература

  • Сазонов Д. М., Гридин А. М., Мишустин Б. А. Устройства СВЧ - М: Высш. школа, 1981
  • Чернушенко А. М. Конструирование экранов и СВЧ-устройств - 1990
  • А. Е. Аксенов. Направленный ответвитель на сосредоточенных индуктивных и емкостных элементах. - Радиотехника, 1976, № 2
  • Фельдштейн А. Л., Явич Л. Р. Синтез четырёхполюсников и восьмиполюсников на СВЧ. - М.: Связь, 1971
  • Справочник по элементам полосковой техники / Под ред. А. Л. Фельдштейна - М.: Связь, 1978
  • Справочник по радиоэлектронным устройствам. В 2-х т. / Под ред. Д. П. Линде - М.: Энергия, 1978
  • Справочник по элементам радиоэлектронных устройств / Под ред. В. Н. Дулина и др. - М.: Энергия, 1978
  • Диэлектрические волноводы / Взятышев В. Ф. - М.: Советское радио, 1970
  • Микроэлектронные устройства СВЧ: Учеб. пособие для радиотехнических специальностей вузов / Под ред. Г. И. Веселова. - М.: Высш. шк., 1988
Нормативно-техническая документация
  • ОСТ11-224.007-82 Ответвители направленные коаксиальные. Общие технические требования
  • ОСТ11-П0.224.001-70 Ответвители направленные волноводные с равным делением мощности
  • ОСТ4-397.001-85 Ответвители и разветвители пассивные оптические. Руководство по применению
  • ОСТ4-397.006-85 Ответвители и разветвители пассивные оптические. Общие технические условия
  • ТУ 11-ХШМ0.356.074ТУ-88 Ответвители направленные прецизионные

Ссылки

  • Самодельные направленные ответвители для кабельного телевидения
  • РАСЧЕТ ФУНКЦИЙ ЧУВСТВИТЕЛЬНОСТИ И ДОПУСКОВ НА РАЗМЕРЫ РЕГУЛИРУЕМЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ

Wikimedia Foundation . 2010 .

  • Рис ап Грифид
  • Мифы народов мира (энциклопедия)
- устройство СВЧ для отвода (ответвления) части электромагнитной энергии основной линии передачи (волноводной, коаксиальной и т. д.) во вспомогательную. Используется в измерительной и контрольно испытательной аппаратуре. * * * НАПРАВЛЕННЫЙ… … Энциклопедический словарь

направленный ответвитель - kryptinis šakotuvas statusas T sritis fizika atitikmenys: angl. directional coupler vok. gerichteter Koppler, m; Richtkoppler, m; Richtungskoppler, m rus. направленный ответвитель, m pranc. coupleur directif, m; coupleur directionnel, m … Fizikos terminų žodynas

Направленный ответвитель - устройство из двух отрезков Радиоволноводов, в котором часть энергии электромагнитной волны, распространяющейся в основном радиоволноводе, посредством элементов связи ответвляется во вспомогательный радиоволновод и передаётся в нём в… …

НАПРАВЛЕННЫЙ ОТВЕТВИТЕЛЬ - устройство из двух отрезков линии передачи электромагн. волн, в к ром часть энергии электромагн. волны, распространяющейся в первом отрезке, посредством элементов связи ответвляется во второй и передаётся в нём в определ. направлении. При… … Большой энциклопедический политехнический словарь

многоэлементный направленный ответвитель - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN multielement directional coupler … Справочник технического переводчика

Полосковая линия - в технике сверхвысоких частот, плоскостная линия, канализирующая электромагнитные волны в воздушной или иной диэлектрической среде вдоль двух пли нескольких проводников, имеющих форму тонких полосок и пластин. Наряду с двухпроводными и… … Большая советская энциклопедия

Оптический рефлектометр - Fluke Networks в работе Оптический рефлектометр (англ. OTDR, Optical Time Domain Reflectometer) прибор для измерения параметров волоконно оптических линий … Википедия

ГОСТ Р 50788-95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений - Терминология ГОСТ Р 50788 95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений оригинал документа: 3.1.4 Антенна устройство для приема… … Словарь-справочник терминов нормативно-технической документации

Это восьмиполюсник, предназначенный для ответвления части мощности СВЧ во вторичную линию. Направленный ответвитель:

20 дБ – переходное ослабление;

40 дБ – направленность.

Направленный ответвитель – устройство направленной взаимосвязи двух линий: бегущая волна в первичной линии от 1 к 2 вызывает во вторичной линии бегущую волну в том же самом направлении 3-4 – сонаправленный ответвитель, или в противоположном направлении, т.е. 4-3 – противонаправленный ответвитель.

Основные параметры:

1. Рабочее затухание – отношение мощностей на входе и выходе первичной линии.

2. Переходное ослабление – отношение мощностей на входе первичной линии и связанным с ней входом вторичной линии.

3. Развязка – отношение мощностей на входе первичной линии и на развязанном выходе вторичной линии.

4. Направленность – отношение мощностей на выходе рабочего и нерабочего плеча вторичной линии.

5. Фазовые соотношения направленного ответвителя характеризуют относительную разность фаз напряжений выходного плеча. Различают синфазные, когда Dj = 0; квадратурные, Dj = 90; противофазные, Dj = 180.

Направленные ответвители классифицируют:

1) По виду связи первичной и вторичной линии передачи:

1) с сосредоточенной связью;

2) с распределенной связью;

3) со щлейфной связью.

2. По степени связи: с сильной и слабой связью.

3. По типу используемых линий.

Режим работы определяется коэффициентом передачи К по полю из первичной линии во вторичную.

Идеальная матрица рассеения:

Если коэффициент связи первичной и вторичной линии мал » 1 , тогда во вторичной линии появляются сильно ослабленные волны, а направленный ответвитель может использоваться для индикации режима первичной линии, например, для измерения комплексного коэффициента отражения первичной линии. Если 0 << К < 1, тогда он используется как элемент сложного тракта разветвленных СВЧ устройств, т.е. в направленном ответвителе осуществляется деление мощности.

1. Волноводные направленные ответвители.

Различают волноводные направленные ответвители по числу элементов связи: 1) одноэлементные; 2) двухэлементные; 3) многоэлементные.

1. Одноэлементные волноводные направленные ответвители.

Элемент связи – отверстие в широкой стенке волновода.

Электрическое поле основного волновода определяет возникновение во вспомогательном волноводе двух равных по амплитуде синфазных волн , , направленных в разные стороны. Магнитное поле определяет возникновение двух равных по амплитуде противофазных волн , .

Тогда в одном направлении: + = Е 4 . В другом направлении: - = Е 3 . Таким образом, ответвление мощности происходит направленно в сторону четвертого плеча. При этом данное условие выполняется для определенного угла q.

В случае двух взаимноперпендикулярных волноводов в качестве элемента связи используют крестообразное отверстие, расположенное на диагонали общей части широких стенок. Максимальная направленность реализуется при расположении отверстия вблизи стенок.

2. Двухэлементные направленные ответвители.

Используются ненаправленные элементы связи, например, отверстия в узкой стенке волновода.

Во вторичную линию 3,4 ответвляются две волны I , , которые в плече 4 складываются синфазно, т.к. проходят одно и то же расстояние. В плече 3 они складываются в противофазе, т.к. волна проходит расстояние дополнительно 2lв/4 = lв/2 ~ 180°. Следовательно в плечо 3 мощность не ответвляется. Возможна реализация переходного ослабления больше 20 дБ.

Недостаток: узкополосность.

3. Многоэлементные направленные ответвители.

Используется число элементов связи меньше двух. При этом расстояние между ними lв/4 . Переходное ослабление меньше 10 дБ. Направленность – порядка 35 дБ. Используются в широкополосных устройствах.

2. Направленные ответвители на полосковой линии.

Направленный ответвитель на связанных линиях состоит из отрезков линий, связанных электромагнитной связью, причем длина области связи составляет нечетное число lв/4 .

С боковой связью:

С лицевой связью:

A-A

В линии 1,2 распространяющаяся волна определяет возникновение в линии 3,4 двух волн, которые в плече 3 складываются синфазно, а в плече 4 – противофазно – направленный ответвитель – противонаправленный.

Направленный ответвитель - устройство для ответвления части электромагнитной энергии из основного канала передачи во вспомогательный. Направленный ответвитель (НО) представляет собой два (иногда более) отрезка линий передачи, связанных между собой определённым образом, основная линия называется первичной, вспомогательная - вторичной. Для нормальной работы НО один из концов вторичной линии (нерабочее плечо) должен быть заглушён согласованной нагрузкой, со второго (рабочего плеча) снимается ответвлённый сигнал, в зависимости от того, какую волну в первичной линии надо ответвить - падающую или отражённую, выбирается, какое плечо вторичной линии будет рабочим. Математически свойства направленных ответвителей описываются с помощью S-матриц (матриц рассеяния).

Радиочастотные направленные ответвители являются обратимыми, то есть при подаче мощности на связанную линию устройство работает как направленный инжектор (сумматор) мощности в основную линию.

Применение

Схема двунаправленного ответвителя с детекторами для измерения мощности падающей и отражённой волны в антенном фидере

Направленные ответвители широко применяются в разных отраслях радиоэлектроники , как в качестве самостоятельных устройств в кабельных и волноводных линиях, так и в качестве элементов радиоэлектронной аппаратуры. Как самостоятельные устройства НО используются для разветвления сигнала с линии (например, телевизионные разветвители) и для контроля параметров сигнала в линии и её согласования. Как элементы аппаратуры НО используются в основном в радиоизмерительных приборах - СВЧ ваттметрах , приборах для измерения КСВ , коэффициента передачи , установках для поверки аттенюаторов и измерения ослаблений , а также в других случаях.

Классификация

  • Радиочастотные направленные ответвители
    • Волноводные НО
    • Волноводно-коаксиальные НО
    • Волноводно-полосковые НО
    • Коаксиальные НО
    • Полосковые НО
    • Шлейфные НО
    • НО на сосредоточенных элементах
  • Оптические (волоконно-оптические) направленные ответвители

Устройство радиочастотных НО

Волноводные НО

Шлейфные НО

Шлейфные НО реализуются, обычно, в виде интегральных микросхем , они состоят из двух отрезков полосковых линий передачи, соединённых между собой с помощью двух и более шлейфов, длины и расстояния, между которыми равны четверти длины волны, определённой в полосковой линии передачи. С увеличением числа шлейфов направленность и диапазонные характеристики шлейфового НО улучшаются. Однако при числе шлейфов более трёх их волновые сопротивления становятся настолько большими, что практически не могут быть реализованы в печатном исполнении. В связи с этим в ИС СВЧ наибольшее распространение получили двух- и трёхшлейфные НО.

НО на сосредоточенных элементах

На метровых и более длинных волнах НО из отрезков линий передачи обычно не применяются из-за своей громоздкости, вместо них используются ответвители на сосредоточенных реактивных элементах. В этих ответвителях отрезки линий заменены четырёхполюсниками из реактивных сосредоточенных сопротивлений. В зависимости от схемы соединения элементов между собой такие ответвители могут быть эквивалентны шлейфным НО или НО на связанных линиях.

НО на диэлектрических волноводах

На миллиметровых и более коротких волнах НО из отрезков металлических волноводов применять не эффективно из-за узкой полосы пропускания, вместо них удобно использовать НО образованные двумя отрезками диэлектрических волноводов (ДВ), плавно сведённых на некоторое расстояние. Использование гибких диэлектриков позволяет делать такие НО с регулируемым коэффициентом деления мощности в плечи (2)и (4) и фазовым сдвигом. А также эти НО отличаются от НО на МВ очень высокой степенью развязки между входом (1) и выходом (3).

(1)---\ /---(2) \____/ /----\ (3)---/ \---(4)

Основные нормируемые характеристики

  • Переходное ослабление - отношение входной мощности основной линии к мощности, ответвлённой в рабочее плечо вспомогательной линии, выраженное в децибелах , при подключении поглощающих нагрузок к неиспользуемым плечам. Переходное ослабление принимает положительные значения, от 3 дБ и более. В англоязычной литературе аналогичная величина coupling factor имеет то же значение и противоположный знак.
  • Направленность (англ. directivity ) - отношение мощностей на выходе рабочего и нерабочего плеч вторичной линии, выраженное в децибелах, при возбуждении рабочего плеча основной линии и подключении поглощающих нагрузок к остальным плечам.
  • Рабочее затухание (англ. main line insertion loss )- отношение мощностей на входе и выходе основной линии, выраженное в децибелах, при подключении поглощающих нагрузок к неиспользуемым плечам.
  • Развязка (англ. isolation ) - отношение мощности на входе первичной линии к мощности в нерабочем плече вторичной линии, выраженное в децибелах, при подключении поглощающих нагрузок к неиспользуемым плечам.
  • Коэффициент стоячей волны в первичной и вторичной линиях
  • Рабочая полоса частот

Направленный ответвитель (НО) - это устройство, позволяющее ответвить часть энергии, проходящей по фидеру, таким образом, что при одном направлении распространения электромагнитной волны сигнал на выходе ответвителя Uотв. = Uф/Кu (Uф - напряжение на фидере, Кu - коэффициент деления ответвителя), а при противоположном направлении распространения - Uотв. = 0. Известно много различных вариантов выполнения направленных ответвителей, но большинство из них имеют один общий недостаток - они отпоетельно узкополосны. Это заставляет при использовании НО, например, в измерителях КСВ вводить регулировку чувствительности.

Описываемый коаксиальный направленный ответвитель позволяет измерять КСВ в полосе частот от 1 до 500 МГц, мощность в фидере вне зависимости от значения КСВ в указанной полосе частот, исследовать ВЧ тракты на наличие неоднородностей в разъемных соединениях и фидере (до долей процента), определять с высокой степенью точности местонахождения пробоев, замыканий, разрывов и т.п. в кабеле и других элементах ВЧ трактов, использовать в системах полудуплекса и т.д.

НО состоит из датчиков тока и напряжения и сумматора. Упрощенная эквивалентная схема приведена на рис. 1 в тексте, где Iф обозначает ток в фидере (знак зависит от направления распространения волны), r - волновое сопротивление кабеля, R1, R2 - резисторы в датчике напряжения, R3 - в датчике тока. Если R1>>R2 = r >>R3, математическое описание работы устройства существенно упрощается. В итоге получается, что Uотв. = (Uф ±Uф)/2Кu где Ku = r /R3 = R1/r - коэффициент деления НО. Таким образом, для волны, распространяющейся в прямом направлении, Uотв. = Uф/Ku а для волны, распространяющейся в противоположном направлении, Uотв. = 0.

Широкополосность описываемого НО обусловлена оригинальным конструктивным исполнением (см. рис. 1 цветной).

Датчик тока выполнен в виде одновиткового трансформатора тока, образованного внутренней центральной жилой фидера (первичный виток) и специальной полостью в экране, играющей вместе с оплеткой фидера роль вторичного витка. Магнитная связь между внутренним объемом фидера, в диэлектрике которою распространяется электромагнитная волна, и полостью создается за счет разрыва оплетки фидера внутри полости. Вторичный виток нагружен на шунт, выполненный из резисторов, равномерно расположенных по периметру разрыва. На эквивалентной схеме они также обозначены как R3.

Датчик напряжения представляет собой резистивный делитель R1R2, включенный между центральным проводником фидера и выходом датчика тока, что и создает режим направленного ответвления.

Делитель R1R2 включен параллельно фидеру, датчик тока R3 - последовательно. Такая Г-образная цепочка обеспечивает согласование в широкой полосе частот и некоторое постоянное ослабление сигнала, проходящего по фидеру, исключая при этом частотные искажения проходящего и ответвленного сигналов.

Практическая конструкция, предназначенная для измерения КСВ и мощности в фидере, выполнена в виде двух встречно включенных НО, как показано на рис. 2 (цветном). Экран, играющий одновременно роль несущей конструкции, спаян из фольгпрованного стеклотскстолита. Размеры экрана некритичны. Предлагаемая конструкция рассчитана на применение фидера с волновым сопротивлением 50 Ом и максимальную мощность передатчика около 200 Вт при КСВ меньше или равном 4. При меньших значениях КСВ допустимая мощность пропорционально увеличивается, при больших - снижается. Коэффициент деления ответвленных сигналов выбран Ку = 100.

диаметр 8...15 мм. НО может быть выполнен непосредственно на имеющемся фидере, в любом его месте.

При изготовлении НО оплетка должна плотно и равномерно прилегать по всей длине к диэлектрику, для чего используют бандаж из тонкой проволоки или нити.

Конструкция прибора получается достаточно простой, если применить приборно-кабельные разъемы. Если же их нет, то можно использовать приборные разъемы, приемы соединения которых с НО приведены на рис. 2 в тексте. Вариант А может быть рекомендован при работе на частотах до 30 МГц, Б и В - на частотах до 500 МГц. Конус (см. вариант B) при этом либо образуется оплеткой кабеля, либо изготавливается из листовой меди, латуни и т. п. Оплетку жестко фиксируют на срезе внутреннего диэлектрика кабеля прижимом, а оставшуюся часть расплетают. Распрямленные проводники равномерно распределяют по периметру. Больший диаметр конуса некритичен и определяется размером задней части разъема. Необходимый электрический контакт достигается пайкой по всему периметру.

Если подобрать резисторы датчиков тока, напряжения и сумматора с точностью ±1 % от указанных номиналов. то налаживать устройство не нужно. В противном случае желательно подобрать один из резисторов в датчике тока по минимальному значению Uотр. Отметим, что эти меры необходимы только при измерении очень малых значений КСВ, меньших, чем 1,05.

Опытный образец, выполненный без предварительного подбора деталей и настройки, показал следующие результаты; диапазон рабочих частот составил 0,3...500 МГц. Коэффициент деления был равен 100 ±5. На частоте 30 МГц коэффициент направленности ухудшался на 2%. на 500 МГц - на 5%. Магнитопровод состоял из 30 колец типоразмером К20Х10Х6 из феррита с проницаемостью 1000. Поскольку в любительской связи нижняя граница используемых частот составляет 1,8 МГц, то число колец можно уменьшить до 6 - 7.

Схема подключения измерительных приборов показана на рис. 3 в тексте. На ней Р1 и Р2 - высокочастотные вольтметры или осциллографы с входным сопротивлением 50 Ом и полосой пропускания, допускающей измерение максимальной частоты исследуемого тракта.

При этом:

При определении местоположения неоднородностей в фидере (в том числе обрывов или замыканий) с помощью двухлучевого высокочастотного осциллографа измеряют временной интервал между зондирующим и отраженным прямоугольными короткими импульсами и, учитывая скорость распространения электромагнитной волны в кабеле (приблизительно 2х10^8 м/с), вычисляют искомое расстояние от НО до неоднородности.

Ю. Куриный (UA9ACZ), мастер спорта СССР, В. Пильский г. Челябинск, г Москва. Авторское свидетельство N346770, бюллетень N 23 от 26.07.72. Радио N9, 1982г.