Презентация "принципы радиосвязи и телевидения". Презентация на тему принцип радиосвязи Этапы развития средств связи

24.02.2024

Развитие современных средств связи

Средства связи - технические и программные средства, используемые для формирования, приема, обработки, хранения, передачи, доставки сообщений электросвязи или почтовых отправлений, а также иные технические и программные средства, используемые при оказании услуг связи или обеспечении функционирования сетей связи.

виды связи П роводные (телефонные, телеграфные и т.п.) Беспроводные, в которых, в свою очередь, выделяют: радио (всенаправленные, узконаправленные, сотовые и иные радио системы), радиорелейные и космические (спутниковые) устройства, системы и комплексы.

Средства коммуникации. Первый – появление устной речи. Ученые обозначили пять мощнейших толчков, ускоривших развитие человечества, которые получила культура за время ее существования:

Второй– изобретение письменности, позволившей человеку вступать в коммуникацию с другими людьми, не находящимися с ним в непосредственном контакте.

Третий – появление и распространение книгопечатания.

Четвертый – возникновение электронных средств массовой коммуникации, которые предоставили возможность каждому стать непосредственным свидетелем и участником историко-культурного процесса, происходящего во всем мире. Радио Телевидение

Пятый, по оценкам многих специалистов, – возникновение и развитие сети Интернет, как нового средства коммуникации, предоставившего широкие возможности в формах и способах получения и передачи информации, а также осуществлении множества других функций.

Этапы развития средств связи Создание оптического телеграфа - устройства для передачи информации на дальние расстояния при помощи световых сигналов. Изобрел эту систему француз Клод Шапп.

Связь по проводам. Первый электрический телеграф создали в 1837 г. английские изобретатели: Уильям Кук Чарльз Уэтсоун

Поздняя модель телеграфа Кука и Уэтстоуна. Сигналы приводили в действие стрелки на приемнике, которые указывали на разные буквы и таким образом передавали сообщение.

Код Морзе В 1843 г. американский художник Сэмюэл Морзе - изобрел новый телеграфный код, заменивший код Кука и Уэтстоуна. Он разработал для каждой буквы знаки из точек и тире.

А Чарльз Уэтстоун создал систему, в которой оператор с помощью кода Морзе набивал сообщения на длинной бумажной ленте, поступавшей в телеграфный аппарат. На другом конце провода самописец набивал принятое сообщение на другую бумажную ленту. Впоследствии самописец заменили сигнализатором, преобразовавшим точки и тире в долгие и краткие звуки. Операторы слушали сообщения и записывали их перевод.

Изобретение первого телефона. Александр Грейам Белл (1847-1922)совместно с Томасом Уотсоном (1854 – 1934) сконструировали прибор, состоящий из передатчика (микрофона) и приемника (динамика).Микрофон и динамик были устроены одинаково В микрофоне голос говорившего заставлял колебаться мембрану, вызывая колебания электрического тока. В динамике ток поступал на мембрану, заставляя ее колебаться и воспроизводить звуки человеческого голоса. П ервый телефонный разговор состоялся 10 марта 1876 г.

Изобретение радио. Создатель радио Александр Степанович Попов (1859-1906). 7 мая 1895 года Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества. Разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Спутниковая связь. Спутники – беспилотные космические аппараты, летающие по орбите вокруг Земли. Они могут передавать телефонные разговоры и телевизионные сигналы в любую точку мира. Они также передают информацию о погоде и навигации. В 1957 году в СССР был запущен «Спутник – 1» - первый в мире искусственный спутник Земли.

В 1960 г. В США были запущены спутники «Курьер» и «Эхо». Они передали первые телефонные разговоры между США и Европой. В 1962г в США на орбиту вышел « Телстар » - первый телевизионный спутник.

Волоконно-оптические линии связи. Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом, оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных.

Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.

Ссылки на источники информации и изображений: www.digimedia.ru/articles/svyaz/setevye-tehnologii/istoriya/faks-istoriya-ofisnogo-vorchuna/ http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A1%D1%82%D0%B5%D0%BF%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87 http://geniusweb.ru/?feed=rss2 ru.wikipedia.org/wiki/ Радио http://www.5ka.ru/88/19722/1.html

Слайд 2

Цели урока:

Ознакомить учащихся с практическим применением э/м волн; Раскрыть физический принцип радиосвязи;

Слайд 3

Радиосвязь - передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.

Виды радиосвязи: радиотелеграфная, радиотелефонная и радиовещание, телевидение, радиолокация.

Слайд 4

Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни.

Слайд 5

Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиолокация- обнаружение объектов и определение их координат с помощью отражения радиоволн. Расстояние от объекта до радиолокатора s=сt/2; с – скорость света; t- промежуток времени между импульсами

Слайд 6

Телевидение

В основе телевизионной передачи изображений лежат три физических процесса: Преобразование оптического изображения в электрические сигналы Передача электрических сигналов по каналам связи Преобразование переданных электрических сигналов в оптическое изображение

Слайд 7

Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп.

Слайд 8

ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ позволяет передавать и воспроизводить цветные изображения подвижных и неподвижных объектов. Для этого в телевизионной передающей камере цветного телевидения изображение разделяется на 3 одноцветных изображения. Передача каждого из этих изображений осуществляется по тому же принципу, что и в черно-белом телевидении. В результате на экране кинескопа цветного телевизора воспроизводятся одновременно 3 одноцветных изображения, дающих в совокупности цветное. Первая система цветного телевидения механического типа была предложена в 1907-08 русским инженером И. А. Адамианом.

Слайд 9

Изобретение радио

Попов Александр Степанович (16.03. 1859-13.01. 1906)- российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, изобретатель радио.

Слайд 10

Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».

Слайд 11

Приемник А.С. Попова

Электрический звонок когерер Электромагнитное реле Источник питания

Слайд 12

В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в 100-200 раз.

Слайд 13

Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн.

Слайд 14

Несколько позднее создал подобные же приборы и провел с ними эксперименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. Попов же свое открытие не запатентовал.

Слайд 15

Увеличение дальности связи

В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Большой победой Попова и едва зародившейся радиосвязи было спасение 27 рыбаков с оторванной льдины, унесенной в море. Радиограмма, переданная на расстояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км.

Слайд 16

К этому времени в Европе уже существовала радиопромышленность. Работы Попова в России не получили развития. Отставание России в этой области угрожающе нарастало. И когда в 1905 в связи с начавшейся русско-японской войной потребовалось большое количество радиостанций, ничего не оставалось, как заказать их иностранным фирмам.

Слайд 17

Отношения Попова с руководством морского ведомства обострились, и в 1901 он переехал в Петербург, где был профессором, а затем первым выборным директором Электротехнического института. Заботы, связанные с выполнением ответственных обязанностей директора, совсем расшатали здоровье Попова, и он скоропостижно скончался от кровоизлияния в мозг.

Слайд 18

Даже получив большую известность, Попов сохранил все основные черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать нуждающимся в помощи. Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова: «Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».

Слайд 19

Принцип радиотелефонной связи

Звук Микрофон ГВЧ Модулятор УВЧ Передающая антенна ЭФИР Приемная антенна УВЧ Детектор УНЧ Динамик

Слайд 20

Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Микрофон преобразует механические звуковые колебания в электрические той же частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Передающая антенна излучает модулированные электромагнитные волны.

Слайд 21

Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Детектор выделяет из модулированных колебаний низкочастотные. Динамик преобразует э/м колебания в механические звуковые колебания.

Слайд 22

Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор.

Слайд 23

Распространение радиоволн

РАДИОВОЛНЫ, электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны λ больше 100 мкм). Радиоволны с различной λ отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на сверхдлинные (λ > 10 км), длинные (10-1 км), средние (1000-100 м), короткие (100-10 м), УКВ (λ

Слайд 24

Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно 50-90 км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.

Слайд 25

Космическая связь

Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций.

Слайд 26

Радар

Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому временирассчитывается расстояние до объекта. Учёные используют радары для измерениярасстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля.

Слайд 27

Аварийная радиоспасательная служба

Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ).

Слайд 28

Темы сообщений

Жизнь и деятельность А.С. Попова История изобретения телевидения Основные направления развития средств связи Здоровье человека и сотовый телефон Радиоастрономия Цветное телевидение История создания телеграфа, телефона Интернет(история создания)

Посмотреть все слайды

Радиосвязь - передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов. Виды радиосвязи: радиотелеграфная, радиотелеграфная, радиотелефонная и радиовещание, радиотелефонная и радиовещание, телевидение, телевидение, радиолокация. радиолокация.


Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни. Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни.


Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиолокация- обнаружение объектов и определение их координат с помощью отражения радиоволн. Расстояние от объекта до радиолокатора s =сt/2; с – скорость света; t- промежуток времени между t- промежуток времени между импульсами импульсами


Телевидение В основе телевизионной передачи изображений лежат три физических процесса: В основе телевизионной передачи изображений лежат три физических процесса: Преобразование оптического изображения в электрические сигналы Преобразование оптического изображения в электрические сигналы Передача электрических сигналов по каналам связи Передача электрических сигналов по каналам связи Преобразование переданных электрических сигналов в оптическое изображение Преобразование переданных электрических сигналов в оптическое изображение


Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп. Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп.


ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ позволяет передавать и воспроизводить цветные изображения подвижных и неподвижных объектов. Для этого в телевизионной передающей камере цветного телевидения изображение разделяется на 3 одноцветных изображения. Передача каждого из этих изображений осуществляется по тому же принципу, что и в черно-белом телевидении. В результате на экране кинескопа цветного телевизора воспроизводятся одновременно 3 одноцветных изображения, дающих в совокупности цветное. Первая система цветного телевидения механического типа была предложена в русским инженером И. А. Адамианом.


Изобретение радио Попов Александр Степанович ()- российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, изобретатель радио.


Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц». Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».




В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз. В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз.


Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн. Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн.


Несколько позднее создал подобные же приборы и провел с ними эксперименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. Попов же свое открытие не запатентовал. Попов же свое открытие не запатентовал.


Увеличение дальности связи В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Большой победой Попова и едва зародившейся радиосвязи было спасение 27 рыбаков с оторванной льдины, унесенной в море. Радиограмма, переданная на расстояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км.


К этому времени в Европе уже существовала радиопромышленность. Работы Попова в России не получили развития. Отставание России в этой области угрожающе нарастало. И когда в 1905 в связи с начавшейся русско- японской войной потребовалось большое количество радиостанций, ничего не оставалось, как заказать их иностранным фирмам.


Отношения Попова с руководством морского ведомства обострились, и в 1901 он переехал в Петербург, где был профессором, а затем первым выборным директором Электротехнического института. Заботы, связанные с выполнением ответственных обязанностей директора, совсем расшатали здоровье Попова, и он скоропостижно скончался от кровоизлияния в мозг.


Даже получив большую известность, Попов сохранил все основные черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать нуждающимся в помощи. Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова: «Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».




Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Микрофон преобразует механические звуковые колебания в электрические той же частоты. Микрофон преобразует механические звуковые колебания в электрические той же частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Передающая антенна излучает модулированные электромагнитные волны. Передающая антенна излучает модулированные электромагнитные волны.


Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Детектор выделяет из модулированных колебаний низкочастотные. Детектор выделяет из модулированных колебаний низкочастотные. Динамик преобразует э/м колебания в механические звуковые колебания. Динамик преобразует э/м колебания в механические звуковые колебания.


Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор.


Распространение радиоволн РАДИОВОЛНЫ, электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны λ больше 100 мкм). Радиоволны с различной λ отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на сверхдлинные (λ > 10 км), длинные (10-1 км), средние (м), короткие (м), УКВ (λ 10 км), длинные (10-1 км), средние (1000-100 м), короткие (100-10 м), УКВ (λ


Распространение радиоволн Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.


Космическая связь Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций. Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций.


Радар Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер Кристиан Хюльсмайер Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля. Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля.


Аварийная радиоспасательная служба Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ). Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ).


Темы сообщений Жизнь и деятельность А.С. Попова Жизнь и деятельность А.С. Попова История изобретения телевидения История изобретения телевидения Основные направления развития средств связи Основные направления развития средств связи Здоровье человека и сотовый телефон Здоровье человека и сотовый телефон Радиоастрономия Радиоастрономия Цветное телевидение Цветное телевидение История создания телеграфа, телефона История создания телеграфа, телефона Интернет(история создания) Интернет(история создания)

Слайд 1

Принцип радиосвязи

Афанасьева Нина Петровна МОУ Уканская средняя школа

Слайд 2

Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.

Слайд 3

Виды радиосвязи Радиотелеграфная Радиовещание Телевидение Радиолокация Радиотелефонная

Слайд 6

Опыты Герца, описание которых появилось в 1888 году, заинтересовали физиков всего мира. Ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн. В России одним из первых занялся изучением ЭМВ преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. Начав с воспроизведения опытов Герца, он затем использовал более надежный и чувствительный способ регистрации ЭМВ.

Слайд 7

Исследования относятся к различным проблемам электротехники и радиотехники, в частности радиосвязи. Попов построил чувствительный приемник, пригодный для беспроводной сигнализации (радиосвязи). В первых опытах по радиосвязи, проведенных в физическом кабинете, а затем в саду Минного офицерского класса, приёмник обнаруживал излучение радиосигналов, посылаемых передатчиком, на расстоянии до 60 м. При проведении опытов Попов заметил, что подсоединение к когереру вертикального металлического провода (антенны) приводило к увеличению расстояния уверенного приема. Попов занимался изучением рентгеновских лучей, им сделаны первые в России рентгеновские снимки предметов и конечностей человека.

Слайд 8

7 Мая 1895 года на заседании Русского физико-химического общества в Петербурге А.С.Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая стал днем рождения радио. Ныне он ежегодно отмечается в нашей стране. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру. Он ставил своей задачей построить прибор для передачи сигналов на большие расстояния. Вначале радиосвязь была установлена на расстоянии 250 м., затем более 600 м. Затем на маневрах Черноморского флота в 1899 ученый установил радиосвязь на расстоянии 20 км, а в 1901 году дальность была уже 150 км. В 1899 была обнаружена возможность приема сигналов с помощью телефона.

Слайд 11

ГВЧ МУ М Перед. антенна Прием. антенна Приемный контур громкоговоритель

Основные принципы радиосвязи

Слайд 13

Преобразование звукового сигнала в электрические колебания низкой частоты

Слайд 14

Схема автогенератора на транзисторе для амплитудной модуляции

Слайд 16

Схема детектора

Распространение радиоволн.

Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно 50-90 км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.