Понятие открытая система определение и пример. Понятие открытых систем

21.06.2024

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом:

Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 140

Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки.

Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, - систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем - открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия.

Напомним, что объект изучения классической термодинамики - закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией, а центральным понятием термодинамики является понятие энтропии.

Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно этому началу, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти». Ход событий во Вселенной невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем уже во второй половине XIX в., и особенно в XX в., биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к снижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. Такая возможность появилась только с переходом естествознания к изучению открытых систем. Николис Г., Пригожин И. Познание сложного. М., 1990 С. 293

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и (или) стока вовне вещества, энергии или информации. Причем приток и сток обычно носят объемный характер, т.е. происходят в каждой точке данной системы. Так, во всех компонентах биологического организма происходит обмен веществ, приток и отток вещества. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному равновесному состоянию.

Введение

Структура высшего учебного заведения, как и структура любой организации, не может быть чем-то статичным, не подлежащим изменению и развитию. Особенно динамично должна совершенствоваться структура вуза в современной ситуации: условиях переходного периода. Высокий уровень динамики структурных перестроек связан со следующими факторами :

· Повышение самостоятельности вузов в решении своих проблем, обусловленное развитием многоканального финансирования, а в правовом плане - появлением нормативных актов (Закон «Об образовании», Закон «О высшем и послевузовском профессиональном образовании»), создающих правовую основу самостоятельности вуза в решении вопросов структурных преобразований;

· Изменение запроса на образовательные и научно - исследовательские услуги и работы.

В перечне вузовских специальностей и направлений появилось большое количество новых, нередко не укладывающихся в сложившуюся структуру, факультетов и других образовательных подразделений вуза. Многие вузы создали школы бизнеса, факультеты и институты, пошли по пути выделения новых специальностей в самостоятельные подразделения или, наоборот, укрупнения факультетов, объединения их в институты.

На современном этапе ВУЗ не может успешно функционировать, будучи закрытой системой. Поэтому большое значение приобретает изучение ВУЗа как открытой образовательной системы, ее целей, задач и структуры.

Понятие открытой системы, ее свойства

В теории управления можно выделить три основных и наиболее общих подхода: функциональный, процессный, системный и ситуационный .

Согласно функциональному (процессному) подходу управление образовательным учреждением есть совокупность управленческих функций.

В рамках системного подхода (С.И. Архангельский, В.П. Беспалько, В.И. Зверева, Ю.А. Конаржевский, П.И. Третьяков, Т.К. Чекмарева, Т.И. Шамова, С.В. Яблонский и др.) образовательное учреждение рассматривается как сложная социально-педагогическая система, т. е. как совокупность взаимосвязанных между собой элементов. В этом случае деятельность руководителя есть построение целостной модели управления школой с учетом всего многообразия субъективных и объективных факторов ее развития, а также модели управления ее разнообразными компонентами, как совокупностью взаимозависимых подсистем, с учетом того, что неправильное функционирование одной из них может повлиять на систему управления в целом.

Ситуационный подход (М.Альберт, С.Доннел, Ю.Ю. Екатерино-славский, Г. Кунц, М.Х. Мескон, Т. Питерс, Р.Уотерман, Ф.Хедоури и др.) есть управление образовательным учреждением в зависимости от особенностей конкретной ситуации.

В специальной литературе (В.Г. Афанасьев, П.К. Анохин, Н.В. Кузьмина, Ю.А. Конаржевский, В.А. Якунин и др.) отмечается, что любая система имеет: цель, задачи, функции, признаки, структуру, атрибуты, отношения или взаимодействия, наличие двух или более типов связи (прямой и обратной), уровни иерархии .

Различают закрытые и открытые системы, отражающие характер связи системы и среды. Системы считаются открытыми , когда между системой и средой происходит обмен (ввод, вывод), или закрытыми, когда такого обмена не происходит. Под вводом подразумевается все, что поступает в систему извне. Речь в этом случае может идти о материалах, энергии и информации. Путем переработки материала, поступившего в систему, вырабатывается новый материал, передаваемый во внешний мир (вывод).

Педагогическая система есть «социально обусловленная целостность взаимодействующих на основе сотрудничества между собой, окружающей средой и ее духовными и материальными ценностями участников педагогического процесса, направленная на формирование и развитие личности» . Это «относительно устойчивая совокупность элементов, организационное соединение людей, сфер их действия, порядка выполнения функций, пространственно-временных связей, отношений, способов взаимодействия и структуры деятельности в интересах достижения определенных воспитательно-образовательных целей и результатов, решения запланированных культурно-развивающих задач воспитания и обучения человека» .

Каждая отдельно взятая педагогическая система (в частности, ВУЗ как образовательная система) является сложной потому, что сама в своем составе имеет подсистемы в виде групп, классов и т.п., но и сама эта система входит в качестве подсистемы в систему образования.

Педагогическую систему относительно закрытого типа характеризует четко выраженная внутренняя структура, часто иерархическая; она строится по определенным правилам, и индивид подчиняется в ней группе.

Наоборот, для открытой педагогической системы характерны высокая степень индивидуализма, минимум стремления членов коллектива к поддержанию как внутренних, так и внешних границ.

Под внутренними границами могут подразумеваться, например, границы между администрацией и сотрудниками, между старшими и младшими сотрудниками и т.д.

Под внешними границами имеется в виду то, что отделяет коллектив от остального общества.

Относительная открытость и относительная закрытость влияют на процессы, происходящие в системе. В рамках образовательных учреждений это видно довольно отчетливо.

ВУЗ, имеющий характер сравнительно замкнутой системы с четко очерченными границами по отношению к окружению, характеризуется, в частности тем, что имеет слабые контакты с внешним миром, редкую смену персонала, редко или никогда не участвует в обмене опытом, отвергает новые идеи, идеологии и методы обучения.

Образовательная структура открытого типа динамична, открыта опыту, имеет широкие контакты с внешним миром.

Система, которая непрерывно взаимодействует с ее средой. Взаимодействие может принять форму информации, энергии, или материальных преобразований на границе с системой, в зависимости от дисциплины, которая определяет понятие. Открытая система противопоставляется понятию изолированная система , которая не обменивается энергией, веществом, или информацией с окружающей средой.

Понятие открытой системы было формализовано, что позволило взаимосвязать теорию организмов, термодинамику и эволюционную теорию . Это понятие подробно анализировалось с появлением теории информации и впоследствии теории систем . Сейчас у понятия есть применения в естественных и общественных науках.

Отличия открытых систем в теории систем от кибернетики

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Открытая система (теория систем)" в других словарях:

    Термодинамич … Физическая энциклопедия

    У этого термина существуют и другие значения, см. Открытая система. Открытая система в статистической механике механическая система, которую может обмениваться веществом и энергией с окружающей средой. Открытые системы взаимодействуют с… … Википедия

    У этого термина существуют и другие значения, см. Открытая система. Открытая система в физике физическая система, которую нельзя считать закрытой по отношению к окружающей среде в каком либо аспекте информационном, вещественном,… … Википедия

    У этого термина существуют и другие значения, см. Открытая система. Открытая система в квантовой механике квантовая система, которая может обмениваться энергией и веществом с внешней средой. В определенном смысле всякая квантовая система… … Википедия

    Диссипативная система (или диссипативная структура), от лат. dissipatio «рассеиваю, разрушаю») это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной… … Википедия

    У этого термина существуют и другие значения, см. Система (значения). Система (от др. греч. σύστημα целое, составленное из частей; соединение) множество элементов, находящихся в отношениях и связях друг с другом, которое образует… … Википедия

    Теория волн Эллиотта - (Elliott Wave Theory) Теория волн Эллиотта это математическая теория об изменении поведения общества или финансовых рынков Все о волновой теории Эллиотта: видео, книги, статьи о теории волн, информация о советниках и индикаторах волн Эллиотта… … Энциклопедия инвестора

    Демократия Ценности Законность · Равенство Свобод … Википедия

    Полезных ископаемых, открытые горные работы, добыча полезных ископаемых с земной поверхности (см. Карьер). Наиболее древние открытые разработки камня относятся к 6 му тыс. до н. э. Полиметаллические руды для выплавки бронзы… … Большая советская энциклопедия

    Закрытая система термодинамическая система, которая может обмениваться с окружающей средой теплом и энергией, но не веществом, в отличие от изолированной системы, которая не может обмениваться с окружающей средой ничем, и открытой системы,… … Википедия

Работа на тему:

Открытость - свойство реальных систем


Аннотация


Введение

Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий.

М.Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.

Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне.

Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.

1. Мир живого как система систем.

Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде.

Вместе с тем сложная организация немыслима без целостности. Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности.

Живые системы - открытые системы, постоянно обменивающиеся веществом, энергией и информацией со средой. Обмен веществом, энергией и информацией происходит и между частями (подсистемами) системы. Для живых систем характерны отрицательная энтропия (увеличение упорядоченности), способность к самоорганизации.

Динамические процессы в биологических системах, их самоорганизация, устойчивость и переходы из стационарного состояния в нестационарное обеспечиваются различными механизмами саморегуляции. Саморегуляция - это внутреннее свойство биологических систем автоматически поддерживать на некотором необходимом уровне параметры протекающих в них процессов. Системы органического мира организованы иерархически и представлены большим количеством уровней структурно-функциональной организации. На каждом уровне складываются свои специфические механизмы саморегуляции, основанные, как правило, на принципе обратной связи, когда отклонение некоторого параметра от необходимого уровня приводит к «включению» функций, которые ликвидируют дисбаланс, возвращая данный параметр к нужному уровню. В случае отрицательной обратной связи знак изменения противоположен знаку первоначального отклонения, а при положительной обратной связи знак изменения совпадает со знаком отклонения; при этом система выходит из одного стационарного состояния и переходит в другое. Любая биологическая система способна пребывать в различных стационарных состояниях. Это позволяет ей, с одной стороны, функционировать в определенных отношениях независимо от среды, а с другой - адаптироваться к среде при соответствующих условиях.

Кроме стационарных, биологические системы имеют и автоколебательные состояния, когда значения параметров колеблются во времени с определенной амплитудой. Такие состояния являются основой периодических биологических процессов, биологических ритмов, биологических часов и др.

Классическое и неклассическое естествознание объединяет одна общая черта: их предмет познания - это простые системы. Однако такое понимание предмета познания является сильной абстракцией. Вселенная представляет собой множество систем. Но лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как «механизмы». Во Вселенной таких «закрытых» простых систем меньшая часть. Подавляющее большинство реальных систем открытые и сложные. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой.

Человек всегда стремился постичь природу сложного, пытаясь ответить на вопросы: как ориентироваться в сложном и нестабильном мире? Какова природа сложного и каковы законы его функционирования и развития? В какой степени предсказуемо поведение сложных систем? Среди сложных систем особый интерес вызывают самоорганизующиеся системы. К такого рода сложным открытым самоорганизующимся системам относятся биологические и социальные системы, которые более всего значимы для человека.

В 1970-е гг. начала активно развиваться теория сложных самоорганизующихся систем. Результаты исследований в области математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании - синергетики. Как и кибернетика, синергетика - это некоторый междисциплинарный подход. Но если в кибернетике акцент делается на процессах управления и обмена информацией, то синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.

Мир самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем его сложнее моделировать. Как правило, для решения большинства возникающих здесь нелинейных уравнений требуется сочетание современных аналитических методов и вычислительных экспериментов. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п.

Методами синергетики осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики - существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций.



2.Открытость-свойство реальных систем

§ 2.1.Открытость.

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом:

Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки.

Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, - систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем - открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия.

Напомним, что объект изучения классической термодинамики - закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией, а центральным понятием термодинамики является понятие энтропии.

Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно этому началу, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти». Ход событий во Вселенной невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем уже во второй половине XIX в., и особенно в XX в., биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к снижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. Такая возможность появилась только с переходом естествознания к изучению открытых систем.

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и (или) стока вовне вещества, энергии или информации. Причем приток и сток обычно носят объемный характер, т.е. происходят в каждой точке данной системы. Так, во всех компонентах биологического организма происходит обмен веществ, приток и отток вещества. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному равновесному состоянию.


§ 2.2. Неравновесность

Неравновесность, неустойчивость открытых систем порождается постоянной борьбой двух тенденций. Первая - это порождение и укрепление неоднородностей, структурирования, локализации элементов открытой системы. И вторая - рассеивание неоднородностей, «размывание» их, диффузия, деструктурализация системы. Если побеждает первая тенденция, то открытая система становится самоорганизующейся системой, а если доминирует вторая - открытая система рассеивается, превращаясь в хаос. А когда эти тенденции примерно равны друг другу, тогда в открытых системах ключевую роль - наряду с закономерным и необходимым - могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.

§ 2.3. Нелинейность.

Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Вследствие этого Вселенная оказывается способной к развитию, эволюции, самоорганизации. Стабильные и равновесные системы не способны к самоорганизации, они являются тупиками эволюции.

Неравновесные системы благодаря избирательности к внешним воздействиям среды воспринимают различия во внешней среде и «учитывают» их в своем функционировании. При этом некоторые слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда эффект от совместного действия причин А и В не имеет ничего общего с результатами воздействия А и В по отдельности.

Процессы в нелинейных системах часто носят пороговый характер - при плавном изменении внешних условий поведение системы изменяется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению. Для каждой системы существует некий оптимальный «коридор нелинейности», способствующий структурообразованию. Очень сильная нелинейность, так же как и очень слабая нелинейность, несовместима с образованием локальных структур. Зато в пределах только оптимального «коридора» усиление нелинейности увеличивает количество способов образования и форм локальных структур, а также количество вариантов эволюции системы, ее маршрутов в будущее.

Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются условия, которые в свою очередь обусловливают изменения в самой этой системе. Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.

Самоорганизующиеся системы - это обычно очень сложные открытые системы, которые характеризуются огромным числом степеней свободы. Однако далеко не все степени свободы системы одинаково важны для ее функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым «подстраиваются» остальные. Такие основные степени свободы системы получили название аттракторов. Аттракторы характеризуют те направления, в которых способна эволюционировать открытая нелинейная среда. Иначе говоря, аттракторы - это те структуры, по направлению к которым протекают процессы самоорганизации в нелинейных средах. Для наглядной иллюстрации понятия аттрактора часто используют образ конуса «воронки», который втягивает в себя траектории эволюции нелинейной системы.

В процессе самоорганизации возникает множество новых свойств и состояний. Очень важно, что обычно соотношения, связывающие аттракторы, намного проще, чем математические модели, детально описывающие всю новую систему. Это связано с тем, что аттракторы отражают содержание оснований неравновесной системы. Поэтому задача определения аттракторов - одна из важнейших при конкретном моделировании самоорганизующихся систем.

Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты - точки бифуркации. Вблизи точек бифуркаций в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает.

В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации. В точке бифуркации система как бы колеблется перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация может послужить началом эволюции системы в некотором определенном направлении, одновременно отсекая при этом возможности развития в других направлениях.

Переход от Хаоса к Порядку вполне поддается математическому моделированию. Более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых разных сферах действительности подчиняются подчас одному и тому же математическому сценарию.

Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации - от низших и простейших к высшим и сложнейшим.



3. Особенности описания сложных систем

Те практические задачи, которые сегодня решаются, требуют глубокого изучения отдельных объектов и явлений природы. Большое число задач связано с исследованием сложных систем, таких, которые включают множество элементов, каждый из которых представляет собой достаточно сложную систему, и эти системы тесно взаимосвязаны с внешней средой. Изучение таких систем в естественных условиях ограничено их сложностью, а иногда бывает невозможным ввиду того, что нельзя провести натурный эксперимент или повторить тот или иной эксперимент. В этих условиях порой единственным возможным методом исследования является моделирование. Без модели нет познания. Любая гипотеза - это модель. И правильность гипотезы о будущем состоянии объекта зависит от того, насколько правильно определили параметры исследуемого объекта и их взаимосвязи между собой и внешней средой. Однако научное описание никогда не охватывает всех деталей, оно всегда выделяет существенные элементы структур и связей. Поэтому такое описание содержит обобщенную модель явлений. В настоящее время термин "общая теория систем" по предложению Л.Берталанфи трактуется в широком и узком смысле. Общая теория систем, понимаемая в широком смысле, охватывает комплекс математических и инженерных дисциплин, начиная с кибернетики и кончая инженерной психологией. Более узкое толкование термина связано с выбором класса математических моделей для описания систем и уровня их абстрактного описания.

Аналогичная ситуация складывается и с теорией развития сложных систем. Ее также можно понимать в широком и узком смысле. В широком смысле теория развития сложных систем - это естественнонаучная конкретизация общей теории развития - материалистической диалектики. В рамках этой же теории должны быть объединены основные положения о поведении сложных систем, разработанные в различных областях научного знания, в результате чего может быть построена концептуальная модель процессов развития сложных систем различной природы. Более узкое понимание теории развития предполагает построение математических моделей развития конкретных систем. В этом случае объект исследования выделяется и анализируется конкретной научной дисциплиной.

Особенность простых систем - в практически взаимной независимости их свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента; особенность сложных систем заключается в существенной взаимосвязи их свойств.

Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.

Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.

Математические модели любых систем могут быть двух типов - эмпирические и теоретические. Эмпирические модели - это математические выражения, аппроксимирующие экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.

Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.

Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.

Построение эмпирических моделей - единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме. Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.

Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.

Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.

Строго обосновать выражение "модели относятся к одному и тому же классу" несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т.п.

Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе

Большинство процессов столь сложно, что при современном состоянии науки очень редко удается создать их универсальную теорию, действующую во все времена и на всех участках рассматриваемого процесса. Вместо этого нужно посредством экспериментов и наблюдений постараться понять ведущие факторы, которые определяют поведение системы. Выделив эти факторы, следует абстрагироваться от других, менее существенных, построить более простую математическую модель, которая учитывает лишь выделенные факторы. К внешним факторам будем относить такие, которые влияют на параметры изучаемой модели, но сами на исследуемом временном отрезке не испытывают обратного влияния.

Известно, что материальное единство мира находит свое отражение во взаимосвязи целого и его частей. До недавнего времени в естествознании преобладающим был подход, согласно которому часть всегда рассматривалась как более простое, чем целое. Новое направление - синергетика описывает процессы, в которых целое обладает такими свойствами, которых нет у его частей. Она рассматривает окружающий материальный мир как множество локализованных процессов различной сложности и ставит задачу отыскать единую основу организации мира как для простейших, так и для сложных его структур. В то же время синергетика не утверждает, что целое сложнее части, она указывает на то, что целое и часть обладают различными свойствами и в силу этого отличны друг от друга.

В синергетике делается попытка описать развитие мира в соответствии с его внутренними законами развития, опираясь при этом на результаты всего комплекса естественных наук. Для нашего анализа представляется важным то, что одним из основных понятий синергетики является понятие нелинейности.

Не только в процессе научного познания, но и в своей повседневной практике мы фактически сталкиваемся с различными проявлениями нелинейных закономерностей. Поведение нелинейных систем принципиально отличается от поведения линейных. Наиболее характерное отличие - нарушение в них принципов суперпозиции. В нелинейных системах результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия последнего.

Математические исследования природы линейности и нелинейности, так или иначе, обусловливались потребностями развития физики. Постановка задачи о нелинейности связана с именами Рэлея, Д"Аламбера, Пуанкаре, которые исследовали математическую модель струны и другие модели при помощи дифференциальных уравнений.

В 30-е годы XX в. на первое место в области обыкновенных дифференциальных уравнений встают проблемы качественной теории. Значительное влияние на ее развитие оказывают потребности физики, особенно нелинейной теории колебаний. Физикам Андронову и Мандельштаму принадлежит здесь целый ряд важных математических идей и разработок. Мандельштам первым обратил внимание на необходимость выработки в физике нового "нелинейного мышления". До его работ существовали лишь отдельные частные подходы к анализу отдельных нелинейностей в различных физических задачах. Роль Мандельштама состоит в том, что он отчетливо понял всеобщность нелинейных явлений, сумел увидеть, что возможности линейной теории принципиально ограничены, что за ее пределами лежит огромный круг явлений, требующих разработки новых нелинейных методов анализа.

Возникают вопросы: какова роль нелинейности, зачем необходимо разрабатывать нелинейные модели, если большое количество физических процессов можно объяснить с помощью линейных моделей или же свести нелинейные задачи к линейным? Ответ на эти вопросы состоит в следующем: линейные задачи рассматривают лишь рост, течения процессов, нелинейность же описывает фазу их стабилизации, возможность существования нескольких типов структур. В то же время нелинейность выражает тенденцию различных физических процессов к неустойчивости, тенденцию перехода к хаотическому движению. Таким образом, сочетание линейности и нелинейности дает более адекватное отражение реальных процессов, так как с их помощью выражается единство устойчивости и изменчивости, являющееся ядром сущности всякого движения.

Решение многочисленных проблем, возникающих при описании перехода от регулярного к стохастическому движению, связывается с развитием стохастической или хаотической динамики.

Удалось показать, что с помощью уравнений, предложенных Х.Лоренцем, либо систем уравнений, включающих странные аттракторы, возможно описание поведения некоторых типов плазменных волн, химических реакций в открытых системах, циклов солнечной активности. закономерностей изменения численности биологических сообществ, исследование вопросов, связанных с генерацией лазеров в некотором диапазоне параметров.

Синергетика, используя единство линейности и нелинейности, выражает в теории те аспекты материального единства мира, которые связаны с общими свойствами саморазвития сложных систем. Нелинейные уравнения, составляющие основу этой теории, позволяют с помощью достаточно простых моделей описывать самые различные материальные процессы. Причем, даже не решая этих уравнений, можно выработать представление о качественно новых чертах тех процессов, которые этими уравнениями описываются.

Теория описания сложных хаотических процессов М.Фейгенбаума представляет интерес, ибо автор, по существу, исходит из признания материального единства мира и пытается найти то общее, что присуще хаотическим процессам различной природы. Эта теория показывает, что поведение всех диссипативных систем вблизи перехода к хаотическому движению носит универсальный характер. Теория дает возможность описать поведение той или иной системы за пределами возможности других математических представлений.

Для выявления наиболее общих закономерностей поведения нужны макромодели, которые имеют наиболее высокий уровень обобщения. Возможно, такой моделью может быть модель процесса развития, построенная на основе информационной концепции.


Заключение

Для появления согласованных направленных процессов в системе необходимо использование информации в процессе функционирования системы. Если использования нет, то новые признаки у элементов появляются независимо от того, какие признаки есть у других элементов. Если нет использования информации, то нет ее накопления во внешней среде, а, следовательно, нет передачи накопленной информации из внешней среды в систему. Организация в системе связана с локализацией элементов, обладающих определенными признаками, с концентрацией этих элементов, то есть образованием диссипативной структуры. Локализованные диссипативные структуры имеют способность накапливать информацию за счет своего рода "примитивной памяти". Такая локализация происходит благодаря самоинструктирующему процессу использования информации.

В процессе использования информации происходит отбор тех элементов-признаков, которые дают преимущества в ходе развития. Использование информации не является ее атрибутом, а лишь свойством, проявляющимся в определенных условиях.

В самоорганизующейся системе возможный максимальный беспорядок увеличивается за счет присоединения новых элементов к системе. Но простое добавление элементов в систему еще не превращает ее в самоорганизующуюся. Во время добавления элементов к системе энтропия системы должна сохраняться постоянной. Для выполнения этого условия необходимо выделение отрицательной энтропии из окружающей среды, т.е. дополнительный ввод энергии, информации в систему, который выражается в передаче накопленной информации из внешней среды в систему.

С возрастанием ценности связано и возрастание способности биологической системы к отбору ценной информации. Эта способность велика у высших животных, органы чувств которых предназначены для такого отбора. Отбор ценной информации лежит в основе творческой деятельности человека. Такой отбор не требует дополнительных энергетических затрат - энергетическая стоимость одного бита информации не зависит от ее ценности.

Естественный отбор означает сравнительную оценку фенотипов применительно к данной экологической нише, т.е. поиск оптимальной ценности.

Теория функциональных систем, сформулированная выдающимся физиологом академиком П.К.Анохиным, утверждает, что движущий стимул поведения человека и животного - полезный приспособительный результат. Им могут быть оптимальное давление крови, достаточное содержание в ней кислорода и питательных веществ, внешние факторы, скажем, пища, вода, итоги социальной деятельности. Во имя достижения поставленных целей в организме создаются временные, "рабочие" объединения структур мозга, различных органов, систем, которые мобилизованы для выполнения отдельной функции. Эта концепция описывает общие принципы, по которым складывается физиологическая архитектура таких объединений.

Обращаясь к вышеизложенной концептуальной модели развития, отметим, что этапу преобразующего отбора соответствует состояние неустойчивости, т.е. этап зарождения и формирования новой системы. Переход от этапа формирования к эволюции отобранного состояния можно рассматривать как скачок в развитии.


Список литературы

1. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991.

2. Николис Г., Пригожин И. Познание сложного. М., 1990;

3. Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994;

4. Князева Е.Н., Курдюков С.П. Основания синергетики. СПб., 2002;

5. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997.



Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 271


Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 279


Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994 С. 93


Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994 С. 127


Николис Г., Пригожин И. Познание сложного. М., 1990 С. 227

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Понятие открытой системы

Одна из важнейших проблем, возникающих в АСУ ТП, при автоматизации измерений и в других областях, заключается в резком увеличении стоимости системы с ростом ее сложности. Объективная причина этого явления состоит в том, что сложные системы часто изготавливаются в единичных экземплярах, а это не позволяет сделать их дешевыми.

Распространенный метод решения указанной проблемы состоит в делении системы на модули таким образом, чтобы каждый из них становился коммерчески эффективным изделием и мог изготавливаться несколькими конкурирующими производителями в больших количествах. Однако при этом возникает проблема аппаратной и программной совместимости модулей. Для достижения совместимости интерфейс, конструктив и выполняемые функции таких модулей должны быть стандартизованы.

Открытой называется модульная система, которая допускает замену любого модуля на аналогичный модуль другого производителя, имеющийся в свободной продаже по конкурентоспособным ценам, а интеграция системы с другими системами (в том числе с пользователем) выполняется без преодоления чрезмерных проблем. Понятие открытости обсуждается на веб-сайтах OMAC (Open Modular Architecture Controls, www.omac.org ), и в работах [Helei , Business - Wang ].

Открытость можно рассматривать на разных уровнях иерархии программного и аппаратного обеспечения системы или ее составных частей. Открытыми, например, могут быть:

    физические интерфейсы, протоколы обмена, методы контроля ошибок, системы адресации, форматы данных, типы организации сети, интерфейсы между программами, диапазоны изменения аналоговых сигналов;

    пользовательские интерфейсы, языки программирования контроллеров, управляющие команды модулей ввода-вывода, языки управления базами данных, операционные системы, средства связи аппаратуры с программным обеспечением;

    конструкционные элементы (шкафы, стойки, корпуса, разъемы, крепежные элементы);

    системы, включающие в себя перечисленные выше элементы.

Под открытостью системы иногда понимают ее соответствие современным промышленным стандартам, которое обеспечивает возможность интеграции с другими открытыми системами [Lewis , Azevedo ]. Однако понятие открытости нужно трактовать шире: оно должно подразумевать, что система не только удовлетворяет стандартам, но стандарт является общепризнанным , а в свободной продаже имеются аналогичные системы других производителей по конкурентоспособным ценам .

Как следует из определения, необходимыми условиями открытости являются:

    модульность;

    соответствие стандартам [Azevedo ] (необязательно официальным, но обязательно общепринятым и легко доступным по цене, компенсирующей только затраты на его разработку, поддержку и распространение);

    наличие в свободной продаже аналогичных систем других производителей (подсистем, модулей) по конкурентоспособным ценам.

Требование модульности вытекает из требования возможности замены части системы (т. е. модуля) аналогичными изделиями других производителей. Для этого система должна состоять из модулей.

Соответствие стандартам необходимо для обеспечения совместимости.

Наличие в свободной продаже и конкурентоспособность цен являются требованиями, вытекающими из практического аспекта: без выполнения этого условия открытая система может существовать только "на бумаге".

Понятие открытости достаточно многогранно и не стандартизовано. Поэтому практически можно говорить только о степени открытости системы, указывая, что именно понимается под открытостью в каждом конкретном случае. Степень открытости можно оценить количеством реализованных признаков открытости.

Для SCADA системы признаками открытости являются совместимость со стандартом ОРС [Iwanitz ], совместимость с широко доступными компьютерами с различными операционными системами (желательно), совместимость с ActiveX, COM и DLL компонентами других производителей, поддержка языков стандарта МЭК 61131-3, наличие встроенного стандартного алгоритмического языка (например, Visual Basic) для реализации функций, которые невозможно реализовать другими средствами SCADA-пакета, возможность работы как с малым, так и большим количеством тегов без необходимости переобучения обслуживающего персонала, возможность применения веб-браузера в качестве пользовательского интерфейса для увеличения количества подключаемых рабочих станций, наличие пользовательского интерфейса, аналогичного интерфейсам других производителей, совместимость со стандартными базами данных и другими приложениями (например, Microsoft Office), расположенными на любых компьютерах сети.

Для промышленных сетей открытость означает наличие в свободной продаже сетевой аппаратуры от разных производителей по конкурентоспособным ценам, совместимой с открытыми стандартами.

Примером открытых систем являются системы, построенные на модулях и контроллерах RealLab! фирмы НИЛ АП (www.RealLab.ru), которые имеют стандартный протокол Modbus RTU или стандартный де-факто протокол DECON, стандартный интерфейс RS-485, стандартный конструктив (крепление на ДИН-рейку, разъемные клеммники), стандартные диапазоны аналоговых сигналов и стандартные уровни дискретных сигналов, стандартный OPC сервер, позволяющий использовать модули с любой стандартной SCADA. Любой модуль в такой системе может быть заменен на модули других производителей, которых в настоящее время насчитывается около десятка.

Идеальным примером открытой системы является современный офисный компьютер. Огромное число производителей в разных странах изготавливают множество аппаратных и программных компонентов, которые можно собрать в единую систему, заменить один компонент на другой, нарастить функциональные возможности. Любой компонент можно найти по достаточно низкой цене; отсутствуют производители, которые могли бы диктовать монопольные цены.

Понятие открытости не подразумевает открытость программного кода, как, например, в ОС Linux, хотя открытость кода позволяет добавлять в систему модули других производителей, что является признаком открытости. Однако открытость исходного кода существенно снижает надежность системы вследствие потенциальной возможности появления в ней дополнительных ошибок, внесенных во время модификации и компиляции. Поэтому открытость программного кода является спорным признаком открытости системы.

В отличие от открытых, закрытые системы разрабатываются по внутренним стандартам отдельных предприятий. Части (модули) закрытых систем не могут быть заменены аналогичными изделиями других производителей, а заказчик, однажды применив закрытую систему, навсегда оказывается привязанным к ее разработчику.

Наиболее подробное и ясное изложение требований к контроллерам с открытой архитектурой изложено в документе международной организации ISA под названием "Requirements of Open, Modular Architecture Controllers for Applications in the Automotive Industry" - "Требования к контроллерам с открытой модульной архитектурой для приложений в автомобильной индустрии". Во время написания этого документа в 1994 году были распространены частно-фирменные решения. Это приводило к тому, что потребитель средств автоматизации, однажды купив изделие одной фирмы, попадал в ценовую зависимость от нее, поскольку интерфейсы средств автоматизации разных фирм были различными и их сопряжение резко увеличивало общую стоимость системы. Расширение такой системы было дорогим, а обслуживающий персонал должен был проходить дополнительное обучение работе с нестандартным оборудованием.

Разновидностью и предельным случаем открытых систем являются системы, удовлетворяющие идеологии "Plug&Play" ("вставил - и заиграло"), когда вообще не требуется усилий для конфигурирования или настройки модулей после их подключения или замены на модули других производителей [Jammes ]. Идеология "Plug&Play" существенно снижает требования к квалификации системных интеграторов, сокращает срок ввода системы в эксплуатацию, а также издержки потребителей на техническую поддержку и эксплуатацию.

1.3.1. Свойства открытых систем

Открытые системы обладают следующими положительными свойствами [Business , Feldmann , Wang ], благодаря которым системные интеграторы проявляют к ним большой интерес:

    модульность;

    платформенная независимость;

    взаимозаменяемость с компонентами других производителей;

    интероперабельность (возможность совместной работы) с компонентами других производителей;

    масштабируемость.

Отметим, что закрытые системы тоже могут быть модульными, интероперабельными, масштабируемыми. Отличие открытых систем состоит в том, что все перечисленные свойства должны выполняться для компонентов, изготовленных разными производителями и имеющихся в свободной продаже.

К системам с открытой архитектурой предъявляют также общепринятые требования: экономичности, безопасности, надежности, грубости (робастности), простоты обслуживания и соответствия условиям эксплуатации, способности к самодиагностике и наличию рекомендаций по ремонту. Система должна обеспечивать максимальное время работы без сбоя и отказа, а также минимальное время, необходимое для выполнения технического обслуживания или ремонта.

Модульность

Модульность - это способность аппаратного или программного обеспечения к модификации путем добавления, удаления или замены отдельных модулей (компонентов системы) без воздействия на оставшуюся ее часть.

Модульность обеспечивается при проектировании системы на архитектурном уровне. Базой для построения модульного программного обеспечения является объектно-ориентированное программирование. Главным достижением в направлении развития модульности программного обеспечения АСУ ТП является выделение в нем независимых подсистем: программы в ПЛК, OPC сервера, баз данных, операторского интерфейса и алгоритмической части, реализуемой на языках стандарта IEC 61131-3, а также деление SCADA на серверную и клиентскую части.

Платформенная независимость

Возможность выполнения программ на разных аппаратно-программных платформах обеспечивает независимость от поставщика этих платформ и дает следующие преимущества:

    расширение выбора оборудования путем увеличения числа поставщиков;

    независимость от поставщика аппаратного и программного обеспечения.

Отсутствие этих свойств приводит к тому, что система, зависящая от одного производителя, прекращает свое развитие в случаях, когда фирма-производитель внезапно уходит с рынка, увеличивает стоимость продукта или снимает его с производства.

Применение ОС Windows является одним из путей повышения открытости систем, поскольку эта операционная система может быть установлена на максимальное число типов производимых компьютеров. В данном случае монополия фирмы Microsoft компенсируется ее размерами и стабильностью.

Платформенную независимость программных средств и, как следствие, повышение открытости обеспечивает также язык Java, хотя он и уступает С++ по быстродействию приложений.

Для улучшения открытости при компиляции исполняемых модулей программ важно избегать "улучшений" компилятора, применения плагинов, надстроек, скачанных "откуда-то из интернета", поскольку они могут сделать невозможным выполнение программы на других платформах.

Важным шагом на пути обеспечения платформенной независимости явилось применение интранет-технологий в автоматизации, когда передача информации к рабочей станции осуществляется с помощью языка xml, а ее представление пользователю выполняется с помощью любого веб-браузера. Веб-браузер позволяет в качестве рабочей станции АСУ ТП использовать компьютер и операционную систему любого производителя из имеющихся в свободной продаже.

Платформенной независимостью обладает также база данных с языком запросов SQL (Structured Query Language), если исключить из него по возможности все нестандартные расширения. Доступ к базе данных с помощью SQL осуществим независимо от программно-аппаратной платформы, на которой она находятся.

Взаимозаменяемость

Взаимозаменяемость - это возможность замены любого модуля (компонента) системы на аналогичный компонент другого производителя, имеющийся в свободной продаже, и возможность обратной замены. Это свойство позволяет ускорить замену отказавшего модуля, улучшить качество уже работающей системы, исключить ценовую зависимость от поставщика.

Интероперабельность (аппаратно-программная совместимость)

Интероперабельность - это способность открытых систем использовать программы, выполняющиеся одновременно на различных платформах в общей сети, с возможностью обмена информацией между ними. Иначе говоря, программные компоненты системы, расположенные на разных аппаратных платформах в общей сети, должны быть способны работать как часть единой системы.

Интероперабельность трудно достижима, но она обеспечивает возможность выбора аппаратных и программных средств из огромного разнообразия, представленного на рынке, вместо ограниченного выбора компонентов монопольного производителя закрытой системы.

Открытая интероперабельная система должна обладать способностью коммуникации и с другими уровнями АСУ предприятия, обеспечивая одновременно безопасность поступающей извне информации.

Одним из методов обеспечения интероперабельности Windows и Unix платформ может быть применение стандарта CORBA (Common Object Request Broker Architecture) [Aleksy ].

Масштабируемость (наращиваемость)

Масштабируемость - это возможность применения одного и того же аппаратного и программного обеспечения (баз данных, пользовательских интерфейсов, средств коммуникации) для систем разного размера (больших и малых). Для обеспечения масштабируемости достаточно, чтобы программное обеспечение больших и малых систем было совместимо по операторскому интерфейсу, языкам программирования, а также интерфейсу с аппаратными средствами и не требовало дополнительного обучения персонала. Масштабируемая система должна обеспечивать возможность простого наращивания функциональных возможностей и размеров путем включения новых компонентов как в аппаратную, так и программную часть системы без модификации старых, опробованных программных и аппаратных модулей [Azevedo ].

Масштабируемость позволяет применять одни и те же аппаратные и программные средства как для больших, так и для малых систем в пределах одной организации. Примером масштабируемых программных систем являются современные SCADA-пакеты TraceMode и MasterSCADA, которые продаются как единый пакет, но имеющий градации в зависимости от количества тегов.

До появления открытых систем обеспечение масштабируемости достигалось путем проектирования системы с большим запасом по габаритам, количеству слотов, интерфейсов. Наращиваемость открытой системы подразумевает иной путь, не требующий запаса ресурсов (и связанных с ним избыточных финансовых вложений). В частности, система, обладающая свойством платформенной независимости и интероперабельности, уже является расширяемой, поскольку она позволяет добавлять новое оборудование или заменять старое новыми модификациями, в том числе оборудованием других производителей.

Стандартность пользовательского интерфейса

Открытые системы должны иметь стандартный пользовательский интерфейс, чтобы выполнить требование о возможности интеграции с другими системами (в данном случае под "другой системой" понимается человек). Стандартизация пользовательского интерфейса снимает необходимость обучения операторов при переходе от одной открытой системы к другой.