Включить-выключить. Схемы управления питанием

10.09.2021

28-07-2016

Anthony Smith

Слаботочные выключатели без фиксации, подобные монтируемым на плату тактовым кнопкам, дешевы, доступны и отличаются большим разнообразием размеров и стилей. В то же время кнопки с фиксацией часто имеют бóльшие габариты, они дороже, а диапазон их конструктивных вариантов относительно ограничен. Это может оказаться проблемой, если вам потребуется миниатюрный недорогой выключатель для фиксации питания нагрузки. В статье предлагается схемное решение, позволяющее придать кнопке с самовозвратом функцию фиксации.

Ранее были предложены конструкции, схемы которых основывались на дискретных компонентах и микросхемах , . Однако ниже будет описана схема, которой для выполнения тех же функций потребуется всего пара транзисторов и горсть пассивных компонентов.

На Рисунке 1а приведен вариант схемы включения питания для случая нагрузки, подключенной к земле. Схема работает в режиме «переключателя»; это значит, что первое нажатие включает питание нагрузки, второе выключает, и так далее.

Чтобы понять принцип работы схемы, представим, что источник питания +V S только что подключен, конденсатор C1 в исходном состоянии разряжен, и транзистор Q1 выключен. При этом резисторы R1 и R3 оказываются включенными последовательно и подтягивают затвор P-канального MOSFET Q2 к шине +V S , удерживая транзистор в закрытом состоянии. Сейчас схема находится в «деблокированном» состоянии, когда напряжение нагрузки V L на контакте OUT (+) равно нулю.

При кратковременном нажатии нормально разомкнутой кнопки затвор Q2 подключается к конденсатору C1, разряженному до 0 В, и MOSFET включается. Напряжение нагрузки на клемме OUT (+) немедленно увеличивается до +V S , через резистор R4 транзистор Q1 получает базовое смещение и открывается. Вследствие этого Q1 насыщается и через резистор R3 подключает затвор Q2 к земле, удерживая MOSFET открытым, когда контакты кнопки разомкнуты. Теперь схема находится в «зафиксированном» состоянии, когда оба транзистора открыты, нагрузка получает питание, а конденсатор C1 заряжается до напряжения +V S через резистор R2.

После повторного кратковременного замыкания переключателя напряжение на конденсаторе C1 (теперь равное +V S) окажется приложенным к затвору Q2. Поскольку напряжение затвор-исток Q2 теперь близко к нулю, MOSFET выключается, и напряжение нагрузки падает до нуля. Напряжение база-эмиттер Q1 также опускается до нуля, закрывая транзистор. В результате при отпущенной кнопке ничто не удерживает Q2 в открытом состоянии, и схема возвращается в «деблокированное» состояние, когда оба транзистора выключены, нагрузка обесточена, а C1 разряжается через резистор R2.

Шунтирующий выходные зажимы резистор R5 устанавливать необязательно. При отпущенной кнопке конденсатор C1 разряжается на нагрузку через резистор R2. Если импеданс нагрузки очень велик (то есть, соизмерим с величиной R2), или нагрузка содержит активные устройства, такие, скажем, как светодиоды, напряжение нагрузки во время выключения Q2 может оказаться достаточно большим, чтобы через резистор R4 открыть транзистор Q1 и не позволить схеме выключиться. Резистор R5 при выключении Q2 подтягивает клемму OUT (+) к шине 0 В, обеспечивая быстрое выключение Q1 и давая схеме возможность надлежащим образом перейти в закрытое состояние.

При правильном выборе транзисторов схема будет работать в широком диапазоне напряжений и может использоваться для управления такими нагрузками, как реле, соленоиды, светодиоды и т. д. Однако не забывайте, что некоторые работающие на постоянном токе вентиляторы и моторы продолжают вращаться и после выключения питания. Это вращение может создавать противоЭДС, достаточно большую, чтобы открыть транзистор Q1 и не позволить схеме выключиться. Решение проблемы показано на Рисунке 1б, где последовательно с выходом включен блокировочный диод. В этом случае также можно добавить в схему в резистор R5.

На Рисунке 2 изображена еще одна схема, предназначенная для нагрузок, подключенных к верхней шине питания, таких, например, как показанное в этом примере электромагнитное реле.

Обратите внимание, что Q1 был заменен p-n-p транзистором, а на месте Q2 теперь находится N-канальный MOSFET. Эта схема работает точно так же, как схема описанная выше. Здесь R5 выполняет функцию подтягивающего резистора, соединяющего выходной контакт OUT (-) с шиной +V S , когда транзистор Q2 выключается, и обеспечивающего быстрое закрывание Q1. Как и в предыдущей схеме, резистор R5 является необязательным компонентом, и устанавливается только при некоторых типах нагрузки, упомянутых выше.

Заметим, что в обеих схемах постоянная времени C1, R2 выбирается исходя из требуемого подавления дребезга контактов. Обычно нормальной считается величина от 0.25 с до 0.5 с. Меньшие постоянные времени могут привести к неустойчивой работе схемы, в то время как бóльшие увеличивают время ожидания между замыканиями контактов кнопки, за которое должен произойти достаточно полный заряд и разряд конденсатора C1. При указанных на схеме значениях C1 = 330 нФ и R2 = 1 МОм номинальная величина постоянной времени равна 0.33 с. Обычно этого бывает достаточно, чтобы устранить дребезг контактов и переключить нагрузку за время порядка пары секунд.

Обе схемы предназначены для фиксации и отпускания ключа в ответ на кратковременные замыкания контактов. Однако каждая из них проектировалась таким образом, чтобы гарантировать правильную работу даже при сколь угодно длительном нажатии кнопки. Рассмотрим схему на Рисунке 2, когда транзистор Q2 закрыт. Если кнопка нажимается для выключения схемы, затвор подключается к потенциалу 0 В (поскольку конденсатор C1 разряжен), и MOSFET закрывается, давая возможность общей точке резисторов R1 и R2 подключиться к шине +V S через резистор R5 и импеданс нагрузки. Одновременно Q1 также выключается, в результате чего затвор Q2 оказывается соединенным с шиной GND через резисторы R3 и R4. Если кнопку сразу же отпустить, C1 просто зарядится через резистор R2 до напряжения +V S . Однако если оставить кнопку замкнутой, напряжение затвора Q2 будет определяться потенциалом делителя, образованного резисторами R2 и R3+R4. Считая, что при разблокированной схеме напряжение на контакте OUT (-) приблизительно равно +V S , для напряжения затвор-исток транзистора Q2 можно записать следующее выражение:

Даже если напряжение +V S будет равно 30 В, результирующего напряжения 0.6 В между затвором и истоком не хватит, чтобы открыть MOSFET вновь. Следовательно, при разомкнутых контактах кнопки оба транзистора будут оставаться выключенными.

Электронный выключатель схема — это простая и недорогая электронная схема с дешевой тактовой кнопкой может управлять включением и выключением питания нагрузки. Схема заменяет более дорогой и крупный механический выключатель с фиксацией. Кнопка запускает ждущий мультивибратор. Выход мультивибратора переключает счетный триггер, логический уровень выхода которого, меняясь после каждого нажатия кнопки, коммутирует питание нагрузки.

Возможны несколько различных вариантов реализации этой схемы. Вариант, в котором использованы два J-K триггера IC1 и IC2 одной микросхемы CD4027B показан на Рисунке 1. Обратная связь, идущая от RC-цепочки, подключенной к выходу IС1 к входу сброса превращает этот триггер в ждущий мультивибратор. Вход J микросхемы IC1 подключен к шине питания, а вход К — к земле, поэтому по переднему фронту тактового импульса на ее выходе устанавливается «лог. 1». Тактовая кнопка включается между тактовым входом микросхемы IС1, и землей. Точно также кнопку можно включить между тактовым входом и положительной шиной питания VDD. Подключение выводов J и К к высокому уровню превращает IC2 в счетный триггер. Микросхема IС2 переключается передним фронтом выходного сигнала IC1.

Понять работу схему можно, посмотрев на временные диаграммы в ее разных точках, изображенные на Рисунке 2. При нажатии кнопки на тактовый вход IС1, начинают поступать импульсы дребезга, передний фронт первого из которых устанавливает на выходе высокий уровень. Конденсатор С1, начинает заряжаться через резистор R1 до уровня «лог. 1». В тот же момент нарастающий фронт импульса, пришедшего на тактовый вход счетного триггера IС2, переключает состояние его выхода. Когда напряжение на конденсаторе С1 достигает порога входа RESET микросхемы IC1 триггер сбрасывается, и уровень выходного сигнала становится низким.

После этого С1 разряжается через R1 до уровня «лог. О». Скорости заряда и разряда С1, одинаковы. Длительность выходного импульса мультивибратора должна превышать время нажатия на кнопку и продолжительность дребезга. Регулировкой подстроечного резистора R1 эту длительность можно изменять в соответствии с типом используемой кнопки. Комплементарные выходы IC2 можно использовать для управления транзисторными силовыми ключами, реле или выводами включения импульсных регуляторов. Схема работает при напряжении от 3 В до 15 В и может управлять питанием аналоговых и цифровых устройств.

— это электронное устройство собранное на мощных полевых транзисторах MOSFET, которые являются одним из самых важных коммутирующих элементов в современной бытовой и профессиональной электронной технике. Используется такие переключатели в основном в тех устройствах,где присутствуют большие нагрузки по постоянному току и способны заменить собой сильно-точный коммутационный аппарат с возможностью гашения электрической дуги,так как у таких устройств из за больших токов часто выгорают контактные площадки и они приходят в негодность. Электронный переключатель с использованием MOSFET-транзисторов таким явлениям не подвержен и отлично справляется с работой коммутации нагрузок при больших токах и напряжениях в различных силовых цепях.

Представленная здесь схема имеет возможность с легкостью управлять переключением больших нагрузок по постоянному току, используя при этом низкие значения импульсного напряжения — всего 5 В. Установленные в схеме MOSFET -транзисторы NTP6411 рассчитаны на работу с напряжением в 100V и током 75А,мощность этих электронных компонентов составляет около 200W.Такие параметры силовых транзисторов позволяет эффективно применять этот электронный переключатель в узлах автомобиля вместо штатного реле. Для активации транзисторов устройства используется как обычный выключатель так и импульсный вход,выбор метода ввода осуществляется установкой перемычки из отрезка изолированного провода на соответствующие выводы коннектора.

На практике наиболее эффективен и полезен вход с импульсным напряжением,так как он имеет низкие значения управляющего напряжения. Проектировалась схема для работы с постоянным напряжением 24V, но вполне успешно может быть использована и при других напряжения,при тестировании на 12 вольтах показала себя в работе с лучшей стороны,к тому же установленные MOSFET-NTP6411 могут быть заменены на другие N-канальные полевые транзисторы соответствующих электрических характеристик. Установленный в схеме диод D1 выполняет защитные функции,тем самым предотвращает броски напряжения исходящих от индуктивных нагрузок. Встроенные в плату светодиоды дают возможность визуального наблюдения за состоянием полевых транзисторов,а винтовые терминалы обеспечивают подключение электронного переключателя в разные модули. По завершению сборки MOSFET переключателя он прошел суточный тест обеспечивая работой электромагнитный клапан с напряжением питания 24 вольта и током пол-ампера,при этом полевые транзисторы находились в совершенно холодном состоянии,даже в отсутствии тепло-отводов.В общем схема зарекомендовала себя надежным устройством,способная работать в самых разных областях применения,в том числе и автомобильной электронике вместо реле или работать как управляющие устройство в светодиодном освещении.

В настоящее время в радиоэлектронной аппаратуре часто применяют электронные выключатели, в которых одной кнопкой можно осуществлять как ее включение, так и выключение. Сделать такой выключатель мощным, экономичным и малогабаритным можно, если применить полевой переключательный транзистор и цифровую КМОП микросхему.

Схема простого выключателя приведена на рис. 1. Транзистор VT1 выполняет функции электронного ключа, а триггер DD1 им управляет. Устройство постоянно подключено к источнику питания и потребляет небольшой ток - единицы или десятки микроампер.

Если на прямом выходе триггера высокий логический уровень, то транзистор закрыт, нагрузка обесточена. При замыкании контактов кнопки SB1 триггер переключится в противоположное состояние, на его выходе появится низкий логический уровень. Транзистор VT1 откроется, и напряжение поступит на нагрузку. В таком состоянии устройство будет находиться до тех пор, пока снова не окажутся замкнутыми контакты кнопки. Тогда транзистор закроется, нагрузка обесточится.

Указанный на схеме транзистор имеет сопротивление канала 0,11 Ом, а максимальный ток стока может достигать 18 А. Следует учитывать, что напряжение затвор-сток, при котором транзистор открывается, составляет 4...4,5 В. При напряжении питания 5...7 В ток нагрузки не должен превышать 5 А, в противном случае падение напряжения на транзисторе может превысить 1 В. Если напряжение питания больше, ток нагрузки может достигать 10... 12 А.

Когда ток нагрузки не превышает 4 А, транзистор можно использовать без теплоотвода. Если ток больше, необходим теплоотвод, либо следует применить транзистор с меньшим сопротивлением канала. Подобрать его нетрудно по справойной таблице, приведенной в статье "Мощные переключательные транзисторы фирмы International Rektifier" в "Радио", 2001, №5, с. 45.

На такой выключатель можно возложить и другие функции, например, автоматическое отключение нагрузки при снижении или превышении питающим напряжением заранее установленного значения. В первом случае это может понадобиться при питании аппаратуры от аккумуляторной батареи, чтобы не допустить ее чрезмерного разряда, во втором - для защиты аппаратуры от завышенного напряжения.

Схема электронного выключателя с функцией отключения при снижении напряжения приведена на рис. 2. В него дополнительно введены транзистор VT2,стабилитрон,конденсатор и резисторы, один из которых - подстроенный (R4).

При нажатии на кнопку SB 1 полевой транзистор VT1 открывается, напряжение поступает на нагрузку. Из-за зарядки конденсатора С1 напряжение на коллекторе транзистора в начальный момент не превысит 0,7 В, т.е. будет иметь низкий логический уровень. Если напряжение на нагрузке станет больше установленного подстроечным резистором значения, на базу транзистора поступит напряжение, достаточное для его открывания. В этом случае на входе "S" триггера останется низкий логический уровень, а кнопкой можно включать и выключать питание нагрузки.

Как только напряжение снизится ниже установленного значения, напряжение на движке подстроечного резистора станет недостаточным для открывания транзистора VT2 - он закроется. При этом на коллекторе транзистора напряжение увеличится до высокого логического уровня, который поступит на вход "S" триггера. На выходе триггера появится также высокий уровень, что приведет к закрыванию полевого транзистора. Нагрузка обесточится. Нажатия на кнопку в этом случае приведут только к кратковременному подключению нагрузки и последующему ее отключению.

Для введения защиты от превышения питающего напряжения автомат следует дополнить транзистором VT3, стабилитроном VD2 и резисторами R5, R6. В этом случае устройство работает аналогично описанному выше, но при увеличении напряжения выше определенного значения транзистор VT3 откроется, что приведет к закрыванию VT2, появлению высокого уровня на входе "S" триггера и закрыванию полевого транзистора VT1.

Кроме указанных на схеме, в устройстве можно применить микросхему К561ТМ2, биполярные транзисторы КТ342А-КТ342В, КТ3102А-КТ3102Е, стабилитрон КС156Г. Постоянные резисторы - МЛТ, С2-33, Р1-4, подстроенные - СПЗ-3, СПЗ-19, конденсатор - К10 17, кнопка - любая малогабаритная с самовозвратом.

При использовании деталей для поверхностного монтажа (микросхема CD4013, биполярные транзисторы КТ3130А-9 - КТ3130Г-9, стабилитрон BZX84C4V7, постоянные резисторы P1-I2, конденсатор К10-17в) их можно разместить на печатной плате (рис. 3) из односторонне фольгированного стеклотекстолита размерами 20x20 мм. Внешний вид смонтированной платы показан на рис. 4.

В публикации были представлены схема и описание электронного переключателя с зависимой фиксацией, в котором использованы восемь кнопок с замыкающими контактами, не фиксируемых в нажатом положении. Переключатель собран на трех микросхемах, причем ПЗУ в нем выполняет функцию приоритетного шифратора. В показано, что ПЗУ позволяет проектировать не только комбинационные устройства (т. е. такие, у которых всем комбинациям входных состояний однозначно соответствуют определенные комбинации выходных), но и асинхронные потенциальные автоматы, у которых благодаря обратным связям и, как следствие, появлению свойства памяти такого однозначного соответствия нет. В качестве простейшего примера такого автомата подойдет известный RS-триггер.

Используя ПЗУ с цепями обратной связи, можно упростить переключатель, описанный в , исключив из него запоминающий регистр и возложив его функцию на ПЗУ. Возможно также исключить и дешифратор. Если для какого-либо разрабатываемого прибора требуется подобный переключатель с числом кнопок не более пяти, его удобно выполнить на ППЗУ К155РЕЗ.

Схема варианта переключателя, собранного на этой микросхеме, показана на рис. 1. Узел формирует два выходных кода. Один из них (код - "1 из 5", активный уровень - низкий) выводят через пять параллельных линий - информационных выходов ПЗУ DS1, - объединенных с пятью адресными входами ПЗУ. Этот код пригоден, в частности, для выбора режима работы того прибора, в который будет встроен переключатель.

Следует отметить, кстати, что включение светодиодов через общий резистор (как в ) может снижать напряжение логической единицы на выходах дешифратора ниже 2,4 В. Поэтому здесь предусмотрены дополнительные резисторы, надежно обеспечивающие нормальное единичное напряжение.

Второй код, если он нужен, выводят через три остальных разряда ПЗУ. Этот код (любого вида, например двоичный) может быть использован для управления коммутацией цифровых или аналоговых сигналов.

Работает переключатель следующим образом. В пять ячеек ПЗУ в соответствии с табл. 1 информацию записывают таким образом, что пять его выходных линий "поддерживают" пять входных линий, т. е. на тот вход, который соответствует нажатой кнопке, с выхода поступает низкий уровень, на остальные четыре - высокий. Таким образом, переключатель находится в устойчивом состоянии и остается в нем после отпускания кнопки.

По остальным 27 адресам ПЗУ записаны единицы во все информационные разряды (числа FF). Поэтому при нажатии на другую кнопку сначала на адресных входах присутствует низкий уровень и от первой нажатой кнопки, и от второй. По любому адресу ПЗУ, содержащему такой "двойной" низкий уровень, записано число FF, которое заменяет нуль на единицу на том входе, который "помнил" низкий уровень от нажатия на первую кнопку. В результате на входе появится адрес с одним нулем - от второй нажатой кнопки, который сразу же будет "поддержан" соответствующей информацией с выхода ПЗУ, и переключатель перейдет в другое устойчивое состояние.

Таким образом, речь идет об устройстве с шестью устойчивыми состояниями. Пять из них соответствуют одной из пяти нажатых кнопок каждое, а шестое - пяти единицам на всех входах ПЗУ. Для практики это положение - холостое, поскольку не может быть установлено нажатием на кнопки. Благодаря "поддержке" переключатель не боится "дребезга" контактов.

Используя дополнительные элементы, нетрудно сделать переключатель на шесть состояний с шестью кнопками. Для этого требуется формировать высокий уровень на входе CS ПЗУ при нажатии на шестую кнопку. Таким формирователем может служить инвертор DD1.1 (рис. 2). Диод VD1 необходим для правильного формирования выходных кодов и свечения шестого светодиода во время нажатия на кнопку SB6.

Восьми выходов ПЗУ уже недостаточно для формирования кодов "1 из 6" и двоичного, поэтому, если нужны они оба, получают недостающий девятый выход, используя элемент И-НЕ DD2.1. Порядок программирования ПЗУ для этого варианта переключателя представлен в табл. 2.

Если необходимо, чтобы переключатель при каждом включении питания всегда устанавливался в определенное состояние (можно выбрать любое одно из 5 или 6). параллельно кнопке с соответствующим номером припаивают оксидный конденсатор емкостью 10...47 мкФ, который, заряжаясь, имитирует нажатие на эту кнопку в течение короткого времени сразу после подачи питания.

Допустимо использование не только одной группы из пяти (шести) кнопок, но и двух групп или более, если поставлена задача сделать несколько пультов управления переключателем. При этом все кнопки дополнительных групп соединяют параллельно соответствующим кнопкам основной группы. Никакого приоритета при этом не возникает. Переключатель перейдет в стабильное состояние, соответствующее той кнопке из любой группы, которая будет отпущена последней.

Выбор порядка подключения выходных линий - произвольный, но для каждого варианта будет новая таблица программирования ПЗУ. В описанном варианте выбран такой порядок подключения, чтобы облегчить трассировку проводников на печатной плате - еще одно преимущество ПЗУ перед жесткой логикой. Попарно соединены те выводы микросхемы, которые в корпусе находятся один напротив другого. Для записывания информации в ПЗУ можно воспользоваться любым подходящим программатором, например, описанным в .