Усилители низкой частоты на транзисторах. Транзисторный усилитель класса а своими руками

10.09.2021

Предлагаемый УНЧ является аппаратом среднего качества. При хорошем подборе оконечных транзисторов суммарный коэффициент искажений в электрическом тракте составляет около 0,7…1,2%. Данный УНЧ создает очень малые акустические искажения при взаимодействии с АС. По этой причине даже с суммарными искажениями до 3,5% он явно превосходит по естественности звучания практически любой обычный бестрансформаторный аппарат (включая зарубежные образцы).
Поскольку данный УНЧ хорошо взаимодействует с АС, по субъективному восприятию его отдача приравнивается к отдаче обычного бестрансформаторного УНЧ мощностью около 50 Вт.
Этот УНЧ отвечает трем основным конструктивным требованиям к аппаратам высокой верности воспроизведения:
— имеет двухтактный выходной каскад;
— выходной каскад выполнен по трансформаторной схеме;
— выходное сопротивление УНЧ согласовано с конкретной акустической системой.
Как показала практика, необходимо придерживаться еще одного правила. Глубина ООС в УНЧ должна быть не более 10… 16 дБ. Связано это не с возможностью появления динамических искажений, а с другими факторами, приводящими к потере «свежести» звучания. УНЧ, имеющий очень низкое выходное сопротивление и очень глубокую ООС, является самозамкнутой системой. По этой причине он практически не реагирует на изменение нагрузочного сопротивления. Его ООС решает при этом только одну задачу - в масштабе усиления строго повторять на выходе форму входного сигнала.
Даже самая качественная звуковая головка на частоте резонанса и на частоте около 10 кГц имеет сопротивление в 7…8 раз больше ее полного сопротивления на частоте 400 Гц. Кроме того, головка имеет большое количество выбросов и провалов на характеристике, но гораздо меньших по величине. Все эти выбросы и про¬валы при низком Rвых и бестрансформаторном выходе дают большое количество слабых призвуков, искажающих звуковую картину. Почти все призвуки и искажения имеют акустическое происхождение и на осциллограмме не фиксируются. Говорить об электроакустическом тракте как о чем-то едином при таком положении дел не приходится. Большинство конструкторов для уменьшения количества призвуков идет на очень значительное демпфирование головок. Резкая потеря отдачи при этом требует соответственного увеличения мощности, а это почти полностью восстанавливает уровень и призвуков, и искажений. Круг замыкается.
В предлагаемом усилителе все это происходит не так.
Данный УНЧ, имея в исходном состоянии (без ООС)
Rвых=7…10R.Haгp, обязательно реагирует на изменение нагрузки, т.е. на выбросы и провалы, изменением выходного сигнала. При этом даже неглубокая ООС способствует уменьшению провалов без всякого демпфирования или шунтирования,сохраняя «свежесть» звучания.
Введение неглубокой ООС уменьшает выходное сопротивление до 0,5…2,0 Rнагр, что говорит об открытости системы и в этом состоянии. При таком положении уже можно говорить об электроакустическом тракте. Как и раньше, в «дотранзисторное» время, встает вопрос уменьшения до минимально возможной величины сопротивления соединительных проводов, которое мешает полному участию ООС усилителя в исправлении отдачи АС по звуковому диапазону.
Если учесть все эти особенности, УНЧ не будет иметь практически никаких призвуков, влияющих на тембровую окраску звуковой картины. Это сразу отмечают неопытные слушатели как «бедность» верхнего звукового диапазона даже при хорошем уровне верхов. При сравнительном прослушивании необходимо сначала хорошо вслушаться в звучание трансформаторного УНЧ, а затем слушать бестрансформаторный. Такой порядок очень резко показывает преимущества трансформаторного УНЧ. Настолько резко, что его замечают даже те, кто вообще не обращает внимание на качество.
УНЧ без ООС должен иметь коэффициент усиления, приблизительно на порядок больший необходимого. При небольшой глубине ООС для получения суммарного коэффициента искажений порядка 1,0% необходимо, чтобы исходный УНЧ имел иска¬жения не более 4…6%. Следовательно, подбор транзисторов для выход¬ного каскада должен быть очень тщательным. Линейность в указанных пределах УНЧ должен сохранять во всем диапазоне выходного сигнала.
При выборе выходных транзисторов для схем с общим эмиттером (ОЭ) необходимо обязательно знать фор му зависимости h21э от Iк. Посмотрим на рис.1, где показана такая зависимость для транзистора КТ802А (кривая 1). Максимум значения п21э соответствует току порядка 3,5 А. За этой точкой начинается спад. Для того чтобы знать, в диапазоне каких токов можно использовать транзистор, нужно учитывать еще зависимость п21э от UK. В принципе, эта зависимость для подавляющего большинства мощных транзисторов имеет подъем разной крутизны с ростом UK.
В реальном УНЧ большему току всегда соответствует меньшее UK. Это означает, что если нанести зависимость h21э от UK на характеристику h21э от 1к, она имеет наклон, обратный по отношению к участку прямолинейного роста h21 (кривая 2). Во многих справочниках форма зависимости h21э от 1к есть, а зависимости h21э от UK нет практически нигде. Для исключения ошибки при выборе типа транзисторов нужно учитывать только прямолинейную часть подъема характеристики. Ток, при котором начинается изгиб характеристики, нужно считать максимальным линейным током данного типа. Зная максимальный линейный ток и допустимое напряжение на коллекторе, легко определить, какую мощность можно снимать с данной пары транзисторов. С ростом температуры кривая зависимости h21э от 1к начинает изгибаться при меньших значениях 1к. По этой причине площадь радиаторов выходных транзисторов должна быть в 1,5 раза большей, чем в обычных бестрансформаторных УНЧ.
Отбор пар транзисторов по величине h21э необходимо делать не менее чем при двух значениях тока. Для УНЧ средней мощности - на токах 0,3 А и 1,0 А. Лучше, если разница в усилении транзисторов не превышает 7…10%. Не все любители имеют возможность произвести замер h21э при усилении переменного тока. Отбирая транзисторы по параметрам на постоянном токе, следует принимать при расчетах величину на 30% меньшую.
Не менее важное значение имеет форма входной характеристики транзисторов. От нее зависит, в каком режиме должен работать возбуждающий каскад. На рис.2 приведена входная характеристика транзистора КТ802А. Такая характеристика свойственна довольно многим типам мощных кремниевых транзисторов. С этими транзисторами при раскачке их генератором напряжения, т.е. источником с очень низким выходным сопротивлением, можно получить на выходе сравнительно неплохую линейность. Однако гораздо лучшие результаты можно получить, если возбуждающий каскад работает в «умягченном» промежуточном режиме. Такой режим просто осуществляется на практике.
Схема предлагаемого УНЧ приведена на рис.3. Выбор довольно мощного возбуждающего каскада и отказ от составных транзисторов не случаен. Сделано это для сведения к минимуму искажений при переходных процессах, а также искажений, свойственных работе выходных транзисторов в классе Б.
Схема во многом заимствована из [ 1 ]. Бестрансформаторный выход заменен на трансформаторный. Емкость конденсатора фильтра в источнике увеличена до 11000 мкФ и не помешает увеличить ее до 15000 мкФ. В связи с проявлением индуктивности некоторых типов электролитических конденсаторов лучше использовать параллельное соединение нескольких, меньших по емкости конденсаторов.
Схема стабилизатора напряжения может быть любой. Главное, чтобы он мог длительное время работать при токе нагрузки не менее 350 мА и при этом имел малый уровень пульсаций.

Особое внимание необходимо уделить изготовлению выходного трансформатора (Т2). Автор применил железо Э-310 Ш20х40 с окном 20x50мм. Первичная обмотка состоит из четырех секций по 60 витков. Каждая секция занимает точно слой, если мотать проводом диаметром 0,68 мм. Допускается некоторое уменьшение толщины провода. Вторичная обмотка состоит из шести секций по 75 витков провода диаметром 0,56 мм, соединенных параллельно. Каждая секция также занимает слой. Схема соединений секций первичной обмотки приведена на рис.3, а расположение на катушке - на рис.4. Такая система намотки дает наибольшую плотность, что очень важно для получения хорошей АЧХ. Трансформатор имеет хорошую симметричность обмоток как по сопротивлению постоянному току, так и по индуктивности.
Если усилитель предполагается эксплуатировать с АС сопротивлением 4 Ом, то секции вторичной обмотки должны содержать по 53 витка, а при АС с сопротивлением 16 Ом - по 106 витков. Следует особо подчеркнуть необходимость строго одинакового числа витков в каждой секции вторичной обмотки. Для выполнения этого условия выводы начала каждой секции должны располагаться строго друг, над другом. Таким же образом на другой щечке следует располагать выводы концов.
Между слоями (секциями) нужно прокладывать 2 слоя чертежной кальки или подобной бумаги. Толщина намотки составляет около 11 мм.
Согласующий трансформатор (Т1) выполнен на железе Ш12х16. Качество железа особого значения не имеет.
Первичная обмотка содержит 400 витков провода ПЭЛ 0,27, а вторичная располагается в двух обособленных секциях по 315 витков провода ПЭЛ 0,51. Обе секции вторичной обмотки следует размещать между половинами первичной.
Для большей симметрии лучше вторичные обмотки мотать в 2 провода. Это делать можно в том случае, если есть опыт такой намотки без
опасных перехлестов витков при переходе на верхний слой.
Силовой трансформатор блока питания намотан на железе от приемника «Фестиваль». Сетевая об-мотка содержит 770 витков провода диаметром 0,51 мм. Обмотка питания стабилизатора имеет 122 витка провода диаметром 1,0 мм, а обмотка нестабилизированного выпрямителя - столько же витков провода 1,5 мм. Для питания схемы задержки наматывается 38 витков провода 0,51 мм. Для сигнальных ламп (3,5 В) мотается 12 витков проводом 0,68 мм. Экранная обмотка содержит один слой провода 0,25 мм.
Если в усилителе применены элементы хорошего качества, наладка его хоть и длительна, но не сложна.
Выходные транзисторы с h21э<22 применять не рекомендуется. Дело в том, что при этом необходимо увеличенное напряжение возбуждения, приводящее к нехватке усиления предварительных каскадов и даже появлению искажений в возбуждающем каскаде. Очень хорошие результаты дают транзисторы КТ908. Среди них часто попадаются пары с Ь21э=40…60. У транзисторов КТ805 перегиб на зависимости Ь21э от 1к начинается раньше, чем у КТ802 и КТ908. Однако это может сказаться только на самых больших громкостях, где чувствительность слуха уже притуплена. Все транзисторы должны быть в металлостеклянном корпусе.
Перед подачей питания резисторы Rl 1 и R12 устанавливаются в положение минимального сопротивления. Подав питание, проверяют режимы VT1 и VT2. При отклонении на 10% и менее подгонку делать не нужно. Для установки начальных токов выходных транзисторов необходимо включить миллиамперметр в разрыв коллекторной цепи. Нельзя включать прибор вместо R13 и R14, поскольку после их установки на место токи сильно меняются.
Ток покоя VT3 и VT4 устанавливается изменением сопротивлений Rl 1 и R12 равным 40 мА.
На время подбора R15 его можно заменить на переменное сопротивление 1,5 кОм. Уменьшать его необходимо до тех пор, пока нижние частоты не начинают хорошо прорабатываться. Обычно это сопровождается уменьшением усиления в 3…3,5 раза. Увеличением громкости уровень выхода необходимо поддерживать таким, на котором обычно производится прослушивание. Увеличение глубины ООС следует производить осторожно, прислушиваясь к тому, не началось ли глушение «свежести» звучания. Дальнейшее углубление ООС уже ничего не улучшает в звучании.
Чувствительность оконечного УНЧ после наладки составляет 1,2…2,0 В. При подборе глубины ООС может оказаться, что уровень верхов неприятно возрастает. Тогда, уменьшив С5 до величины 0,25 мкФ или 0,15 мкФ, можно сместить подъем в сторону более высоких частот и этим уменьшить выброс характеристики.

Наиболее ярко естественность звучания данного УНЧ проявляется при его работе на АС с малой степенью компрессии, т.е. с относительно большим объемом ящика.
Предварительный усилитель может быть любым. Важно, чтобы он дал необходимое усиление и возможность регулировки тембра. В этом отношении удобны предварительные усилители на микросхеме. Уровень выхода таких схем легко меняется в цепи ООС.
Усилитель не требует защиты оконечных транзисторов от короткого замыкания на выходе и защиты АС от пробоя оконечных транзисторов. Однако схему задержки включения АС ввести не помешает.
Данный УНЧ, как и многие другие трансформаторные, малокритичен к отсутствию тонкомпенсации. Получается это из-за того, что с уменьшением громкости уменьшается напряжение звуковой частоты на обмотках согласующего и выходного трансформаторов. Это приводит к росту числа витков на вольт, что расширяет полосу в сторону нижних частот и создает впечатление роста отдачи на этих частотах.
Может случиться, что при наладке появляется нежелательный подъем характеристики на нижних частотах. Избавиться oт этого можно просто уменьшением переходного конденсатора С1 на входе усилителя. Это чаще всего случается при использовании закрытых АС. Если Вы администратор сайта, самый быстрый способ исправить эту ошибку — воспользоваться Технической проверкой сайта в панели управления хостингом.

Хочу представить конструкцию простого, но мощного усилителя низкой частоты, выполненного на современных недорогих транзисторах. Основные достоинства этого усилителя - простота сборки, доступные и дешевые радиодетали, также готовый усилитель в наладке не нуждается и работает сразу. Усилитель развивает очень высокую мощность по сравнению с аналогичными схемами. Из электрических параметров хочется отметить очень высокую линейность в рабочем диапазоне частот от 20Гц до 20кГц. Правда без недостатков тоже не обошлось. У данной схемы есть повышенный уровень шумов при большой громкости, но если учесть простоту и доступность, то все же собрать усилитель стоит, особенно советую автолюбителям для мощного сабвуфера, поскольку мощность такой схемы вполне позволяет раскачать импортные головки большой мощности. Из схемы видно, что проще некуда. В схеме использованы всего 5 транзисторов и несколько дополнительных радиодеталей.

Для уменьшения уровня шума усилителя, на вход нужно будет поставить переменный резистор, сопротивлением от 20 до 100 кОм, им также регулируют громкость. В таком случае, при малой громкости шума практически не будет, а при большой громкости шум почти не слышим, а если усилитель работает с нч фильтром на входе (под сабвуфер), то никаких шумов не будет вообще.

Усилитель способен выдать окало 100 Ватт на нагрузку 8 Ом! если же используется головка с сопротивлением 4 ом, то мощность возрастает до 150 ватт! Параметры УМЗЧ:

Коэффициент усиления по напряжению......................................................20

Напряжение питания Uпит...............................................................................+-15…+-50В
Номинальная мощность P при Uпит = +-30В на 4Ом...........................................100Вт
Максимальная мощность Pmax Uпит=+-45В на 4Ом..........................................150Вт
Чувствительность по входу Uвх.......................................................................1В
Суммарный коэф-т всех видов искажений при P=60Вт 4Ома, Kd........................0,005%
Ток покоя усилителя Ixx..................................................................................20-25мА
Ток покоя выходного каскада..........................................................................0мА
Полоса воспроизводимых частот по уровню –3дБ, Гц,............................5-100 000

Параметры достаточно хороши, единственная преграда для использования схемы в качестве автомобильного усилителя - это повышенное двухполярное питание, но это не так уж и большая помеха, поскольку сегодня известно можество схем преобразователей напряжения, одна из таких схем выполняется на микросхеме TL494. Схема стандартная и позволяет получить на выходе трансформатора до 200 ватт мощности, что вполне хватает для полноценной работы данного самодельного усилителя. Схему преобразователя не привожу, поскольку это уже совсем другая тема.

Эта схема усилителя звука была создана всеми любимым британским инженером (электронщик-звуковик) Линсли-Худом. Сам усилитель собран всего на 4-х транзисторах. С виду — обыкновенная схема усилителя НЧ, но это лишь с первого взгляда. Опытный радиолюбитель сразу поймет, что выходной каскад усилителя работает в классе А. Гениально то, что просто и эта схема тому доказательство. Это сверхлинейная схема, где форма выходного сигнала не изменяется, то, есть на выходе мы получаем ту же форму сигнала, что на входе, но уже усиленный. Схема более известна под названием JLH — ультралинейный усилитель класса А , и сегодня я решил представить ее вам, хотя схема далеко не новая. Данный усилитель звука, своими руками собрать может любой рядовой радиолюбитель, благодаря отсутствию в конструкции микросхем, делающей его более доступным.

Как сделать усилитель для колонок

Схема усилителя звука

В моем случае использовались только отечественные транзисторы, поскольку с импортными напряг, да и стандартные транзисторы схемы, найти нелегко. Выходной каскад построен на мощных отечественных транзисторах серии КТ803 — именно с ними звук кажется лучше. Для раскачки выходного каскада использован транзистор средней мощности серии КТ801 (удалось найти с трудом). Все транзисторы можно заменить на другие (в выходном каскаде можно использовать КТ805 или 819). Замены не критичны.


Совет: кто решит попробовать на «вкус» этот самодельный усилитель звука — используйте германиевые транзисторы, они лучше звучат (ИМХО). Было создано несколько версий этого усилителя, все они звучат… божественно, других слов не могу найти.

Мощность представленной схемы не более 15 ватт (плюс минус), ток потребления 2 Ампер (иногда чуть больше). Транзисторы выходного каскада будут греться даже без подачи сигнала на вход усилителя. Странное явление, не правда ли? Но для усилителей класса. А, это вполне нормальное явление, большой ток покоя — визитная карточка буквально всех известных схем этого класса.


В ролике представлена работа самого усилителя, подключенного к колонкам. Обратите внимание, что ролик снят на мобильный телефон, но о качестве звука можно судить и так. Для проверки любого усилителя стоит лишь послушать всего одно мелодию — Бетховен «К Элизе». После включения становится ясно, что за усилитель перед вами.

90% микросхемных усилителей не выдержат тест, звук будет «обломанным» могут наблюдаться хрипы и искажения при высоких частотах. Но вышесказанное не касается схемы Джона Линсли, ультралинейность схемы позволяет полностью повторить форму входного сигнала, этим получая только чистое усиление и синусоиду на выходе.

В моем случае схема усилителя звука была реализована на макетной плате, пока нет возможности собрать второй канал, но в будущем обязательно сделаю и помещу все в корпус.



Читатели! Запомните ник этого автора и никогда не повторяйте его схемы.
Модераторы! Прежде чем меня забанить за оскорбления, подумайте, что Вы "подпустили к микрофону" обыкновенного гопника, которого даже близко нельзя подпускать к радиотехнике и, тем более, к обучению начинающих.

Во-первых, при такой схеме включения, через транзистор и динамик пойдет большой постоянный ток, даже если переменный резистор будет в нужном положении, то есть будет слышно музыку. А при большом токе повреждается динамик, то есть, рано или поздно, он сгорит.

Во-вторых, в этой схеме обязательно должен быть ограничитель тока, то есть постоянный резистор, хотя бы на 1 КОм, включенный последовательно с переменным. Любой самоделкин повернет регулятор переменного резистора до упора, у него станет нулевое сопротивление и на базу транзистора пойдет большой ток. В результате сгорит транзистор или динамик.

Переменный конденсатор на входе нужен для защиты источника звука (это должен обьяснить автор, ибо сразу же нашелся читатель, который убрал его просто так, считая себя умнее автора). Без него будут нормально работать только те плееры, в которых на выходе уже стоит подобная защита. А если ее там нет, то выход плеера может повредиться, особенно, как я сказал выше, если выкрутить переменный резистор "в ноль". При этом на выход дорогого ноутбука подастся напряжение с источника питания этой копеечной безделушки и он может сгореть. Самоделкины, очень любят убирать защитные резисторы и конденсаторы, потому-что "работает же!" В результате, с одним источником звука схема может работать, а с другим нет, да еще и может повредиться дорогой телефон или ноутбук.

Переменный резистор, в данной схеме должен быть только подстроечным, то есть регулироваться один раз и закрываться в корпусе, а не выводиться наружу с удобной ручкой. Это не регулятор громкости, а регулятор искажений, то есть им подбирается режим работы транзистора, чтобы были минимальные искажения и чтобы из динамика не шел дым. Поэтому он ни в коем случае не должен быть доступен снаружи. Регулировать громкость, путем изменения режима НЕЛЬЗЯ. За это нужно "убивать". Если очень хочется регулировать громкость, проще включить еще один переменный резистор последовательно с конденсатором и вот его уже можно выводить на корпус усилителя.

Вообще, для простейших схем - и чтобы заработало сразу и чтобы ничего не повредить, нужно покупать микросхему типа TDA (например TDA7052, TDA7056... примеров в интернете множество) , а автор взял случайный транзистор, который завалялся у него в столе. В результате доверчивые любители будут искать именно такой транзистор, хотя коэффициент усиления у него всего 15, а допустимый ток аж 8 ампер (сожгет любой динамик даже не заметив).


Транзисторные усилители, несмотря на появление более современных микросхемных, не потеряли свой актуальности. Достать микросхему бывает, порой, не так легко, а вот транзисторы можно выпаять практически из любого электронного устройства, именно поэтому у заядлых радиолюбителей иногда накапливаются горы этих деталей. Для того, чтобы найти им применение предлагаю к сборке незатейливый транзисторный усилитель мощности, сборку которого осилит даже начинающий.

Схема

Схема состоит из 6-ти транзисторов и может развивать мощность до 3-х ватт при питании напряжением 12 вольт. Этой мощности хватит для озвучивания небольшой комнаты или рабочего места. Транзисторы Т5 и Т6 на схеме образуют выходной каскад, на их место можно поставить широко распространённые отечественные аналоги КТ814 и КТ815. Конденсатор С4, который подключается к коллекторам выходных транзисторов, отделяет постоянную составляющую сигнала на выходе, именно поэтому данный усилитель можно использовать без платы защиты акустических систем. Даже если усилитель в процессе работы выйдет из строя и на выходе появится постоянное напряжение, оно не пройдёт дальше этого конденсатора и динамики акустической системы останутся целы. Разделительный конденсатор С1 на входе лучше применить плёночный, но если такого нет под рукой, подойдёт и керамический. Аналогом диодов D1 и D2 в данной схеме являются 1N4007 или отечественные КД522. Динамик можно использовать сопротивлением 4-16 Ом, чем ниже его сопротивление, тем большую мощность будет развивать схема.

(cкачиваний: 529)


Сборка усилителя

Собирается схема на печатной плате размерами 50х40 мм, рисунок в формате Sprint-Layout к статье прилагается. Приведённую печатную плату при печати необходимо отзеркалить. После травления и удаления тонера с платы сверлятся отверстия, лучше всего использовать сверло 0,8 - 1 мм, а для отверстий под выходные транзисторы и клеммник 1,2 мм.


После сверления отверстий желательно залудить все дорожки, тем самым уменьшить их сопротивление и защитить медь от окисления. Затем впаиваются мелкие детали – резисторы, диоды, после чего выходные транзисторы, клеммник, конденсаторы. Согласно схеме, коллекторы выходных транзисторов должны соединяться, на данной плате это соединение происходит путём замыкания «спинок» транзисторов проволокой или радиатором, если он используется. Радиатор требуется ставить в том случае, если схема нагружена на динамик сопротивлением 4 Ома, или если на вход подаётся сигнал большой громкости. В остальных же случаях выходные транзисторы почти не нагреваются и не требуют дополнительного охлаждения.


После сборки обязательно нужно смыть остатки флюса с дорожек, проверить плату на наличие ошибок сборки или замыканий между соседними дорожками.

Настройка и испытания усилителя

После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.