Как сделать схему по информатике. Представление алгоритмов в виде блок-схем

08.12.2023

Алгоритм и его свойства

Решение задач на компьютере основано на понятии алгоритма. Алгоритм – это точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к исходному результату.

Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация – это техника разработки (составления) алгоритма для решения задач на ЭВМ.

Изобразительные средства для описания (представление) алгоритма

Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:

Словесно- формульное описание

Блок-схема (схема графических символов)

Алгоритмические языки

Операторные схемы

Псевдокод

Для записи алгоритма существует общая методика:

Каждый алгоритм должен иметь имя, которое раскрывает его смысл.

Необходимо обозначить начало и конец алгоритма.

Описать входные и выходные данные.

Указать команды, которые позволяют выполнять определенные действия над выделенными данными

Общий вид алгоритма

Алгоритм:

Название алгоритма

Описание данных

Формульно-словесный способ записи алгоритма характеризуется тем, что описание осуществляется с помощью слов и формул. Содержание последовательности этапов выполнения алгоритмов записывается на естественном профессиональном языке предметной области в произвольной форме.

Графический способ описания алгоритма (блок - схема) получил самое широкое распространение. Для графического описания алгоритмов используются схемы алгоритмов или блочные символы (блоки), которые соединяются между собой линиями связи.

Каждый этап вычислительного процесса представляется геометрическими фигурами (блоками). Они делятся на арифметические или вычислительные (прямоугольник), логические (ромб) и блоки ввода-вывода данных (параллелограмм).

Порядок выполнения этапов указывается стрелками, соединяющими блоки. Геометрические фигуры размещаются сверху вниз и слева на право. Нумерация блоков производится в порядке их размещения в схеме.

Алгоритмические языки - это специальное средство, предназначенное для записи алгоритмов в аналитическом виде. Алгоритмические языки близки к математическим выражениям и к естественным языкам. Каждый алгоритмический язык имеет свой словарь. Алгоритм, записанный на алгоритмическом языке, выполняется по строгим правилам этого конкретного языка.

Операторные схемы алгоритмов. Суть этого способа описания алгоритма заключается в том, что каждый оператор обозначается буквой (например, А – арифметический оператор, Р – логический оператор и т.д.).

Операторы записываются слева направо в последовательности их выполнения, причем, каждый оператор имеет индекс, указывающий порядковый номер оператора. Алгоритм записывается в одну строку в виде последовательности операторов.

Псевдокод – система команд абстрактной машины. Этот способ записи алгоритма с помощью операторов близких к алгоритмическим языкам.

Принципы разработки алгоритмов и программ

Типы алгоритмических процессов

По структуре выполнения алгоритмы и программы делятся на три вида:

Линейные

Ветвящиеся

Циклические

Линейный алгоритм (линейная структура) – это такой алгоритм, в котором все действия выполняются последовательно друг за другом и только один раз. Схема представляет собой последовательность блоков, которые располагаются сверху вниз в порядке их выполнения. Первичные и промежуточные данные не оказывают влияния на направление процесса вычисления.

Алгоритмы разветвляющейся структуры

На практике часто встречаются задачи, в которых в зависимости от первоначальных условий или промежуточных результатов необходимо выполнить вычисления по одним или другим формулам.

Такие задачи можно описать с помощью алгоритмов разветвляющейся структуры. В таких алгоритмах выбор направления продолжения вычисления осуществляется по итогам проверки заданного условия. Ветвящиеся процессы описываются оператором IF (условие).

Циклические вычислительные процессы

Для решения многих задач характерно многократное повторение отдельных участков вычислений. Для решения таких задач применяются алгоритмы циклической структуры (циклические алгоритмы). Цикл – последовательность команд, которая повторяется до тех пор, пока не будет выполнено заданное условие. Циклическое описание многократно повторяемых процессов значительно снижает трудоемкость написания программ.

Существуют две схемы циклических вычислительных процессов.


Особенностью первой схемы является то, что проверка условия выхода из цикла проводится до выполнения тела цикла. В том случае, если условие выхода из цикла выполняется, то тело цикла не выполняется ни разу.

Особенностью второй схемы является то, что цикл выполняется хоты бы один раз, так как первая проверка условия выхода из цикла осуществляется после того, как тело цикла выполнено.

Существуют циклы с известным числом повторений и итерационные циклы. При итерационном цикле выход из тела цикла, как правило, происходит при достижении заданной точности вычисления.

Языки программирования

Языки программирования – это искусственные языки записи алгоритмов для исполнения их на ЭВМ. Программирование (кодирование) - составление программы по заданному алгоритму.

Классификация языков программирования. В общем, языки программирования делятся на две группы: операторные и функциональные. К функциональным относятся ЛИСП, ПРОЛОГ и т.д.

Операторные языки делятся на процедурные и непроцедурные (Smalltalk, QBE). Процедурные делятся на машино - ориентированные и машино – независимые.

К машино – ориентированным языкам относятся: машинные языки, автокоды, языки символического кодирования, ассемблеры.

К машино – независимым языкам относятся:

Процедурно – ориентированные (Паскаль, Фортран и др.)

Проблемно – ориентированные (ЛИСП и др.)

Объектно-ориентированные (Си++, Visual Basic, Java и др.)


Средства и правила построения блок-схем

Блок-схема является формой представления алгоритма с помощью графических символов. Графические символы, их размеры, а также правила построения блок-схем определены государственными стандартами. Рассмотрим часто употребляемые графические символы (полный список включает 42 символа).

Процесс. Выполнение операции или группы операций, в результате чего изменяется значение, форма представления или расположения данных.

Внутри символа или же в виде комментария на естественном языке или в виде формулы записываются действия, которые производятся при выполнении операции или группы операций.

Решение. Выбор направления выполнения алгоритма или программы в зависимости от некоторых переменных условий.

Символ используется для изображения унифицированных структур:

РАЗВИЛКА ПОЛНАЯ

РАЗВИЛКА НЕПОЛНАЯ

ЦИКЛ-ПОКА

Модификация. Выполнение операций, меняющих команды или группу команд, изменяющих программу.

Символ используется для изображения унифицированной структуры ЦИКЛ С ПАРАМЕТРОМ. Внутри символа записывается параметр цикла с указанием начального и конечного значений, а также шаг изменения цикла, если он не равен единице.

Предопределенный процесс. Использование ранее созданных и отдельно описанных алгоритмов или программ (процедур, функций, программных модулей).Символ служит для указания обращения к процедурам, функциям, программным модулям.

Ручной ввод. Ввод данных оператором в процесс обработки при помощи устройства, непосредственно сопряженного с компьютером (например, клавиатура).


Дисплей. Ввод - вывод данных в случае, если непосредственно подключенное к процессору устройство воспроизводит данные и позволяет оператору вносить изменения в процессе их обработки.

Документ. Ввод - вывод данных, носителем которых служит бумага.

Линия потока. Указание последовательности связей между символами.

Перечислим некоторые правила изображения линий потока:

1) линии потока должны быть параллельны линиям внешней рамки блок-схемы (границам листа, на котором изображена блок-схема);

2) направление линии потока сверху вниз и слева направо принимается за основное и стрелками не обозначается, в остальных случаях направление линии потока обозначается стрелками;

3) изменение направления линии потока производится под углом 90 градусов.

Соединитель. Указание связи между прерванными линиями потока, связывающими символы. Если блок-схема состоит из нескольких частей, расположенных на одной странице, то линия потока одной части заканчивается символом СОЕДИНИТЕЛЬ, а линия потока на продолжении блок-схемы начинается с этого же символа. Внутри символов СОЕДИНИТЕЛЬ ставятся одинаковые порядковые номера, соответствующие разорванной линии потока.

Межстраничный соединитель. Указание связи между разъединенными частями схем алгоритмов и программ, расположенных на разных листах.

Данный символ служит для тех же целей, что и соединитель, но при расположении частей блок-схемы на разных страницах.

Пуск - останов. Начало, конец, прерывание процесса обработки данных или выполнения программы.

Комментарий. Связь между элементами схемы и пояснениями.

Позволяет включать в блок-схему пояснения, формулы и другую информацию.


Размеры символов должны удовлетворять соотношению b = 1.5a (a и b указаны на рис. 1). На этом же рисунке показан пример использования символа КОММЕНТАРИЙ.

Рис. 1. Фрагмент блок-схемы

Каждому символу на блок-схеме присваивается порядковый номер. Для примера на рис. 1 символу ПРОЦЕСС присвоен порядковый номер 4.

Блок-схемы - это та часть документации к программе, которая почти всегда имеется в избытке. Между тем многие программы вообще не нуждаются в блок-схемах и лишь очень немногие из них требуют больше одного листа таковых.

Блок-схемы показывают структуру ветвления программы только в одном ее аспекте. Но даже эта структура видна достаточно четко, только если вся блок-схема помещается на одной странице, и о ней очень трудно получить хорошее представление, если блок-схема располагается на нескольких листах, связанных вместе нумерованными стрелками.

Блок-схема, помещающаяся на одной странице, для большой программы по существу превращается в общий план программы, перечень ее основных этапов или блоков, и, как таковая, она очень удобна. На рис. 15.1 показан такой граф подчиненности подпрограмм.

Конечно, такой граф и не следует стандартам блок-схем, и не нуждается в них. Все эти правила относительно вида элементов, стрелок, порядка нумерации и т. д. нужны только для того, чтобы можно было понять подробные блок-схемы.

Рис.15.1. Пример структуры программы

Подробные блок-схемы, однако, устарели; они только мешают, и в лучшем случае пригодны для обучения новичков, еще не умеющих алгоритмически мыслить. В свое время предложенные Голдстайном и Нейманом маленькие квадратики на блок-схемах вместе со своим содержанием выступали в качестве языков высокого уровня, объединяя абсолютно непонятные операторы машинного языка в группы, имеющие определенный смысл. Как давно уже указал Айверсон2, в систематическом языке высокого уровня такая группировка уже осуществлена, так что каждый квадратик просто соответствует оператору (рис. 15.2). Тогда сами квадратики превращаются в случайное и ненужное упражнение по рисованию, и от них можно отказаться. Но теперь не остается ничего, кроме стрелок. Стрелки, соединяющие оператор со следующим за ним, не нужны, сотрем их. Остаются только операторы перехода. Но если следовать хорошей практике, а использовать блочные структуры для минимизации числа операторов перехода, то останется совсем/немного стрелок, вот они-то очень сильно облегчают понимание. Эти стрелки можно перенести прямо ни распечатку программы и совсем избавиться от блок-схемы.

В действительности блок-схемы гораздо больше превозносятся, чем используются на практике. Я никогда не видел, чтобы опытный программист чертил блок-схемы, прежде чем написать программу. Когда стандарты организации требуют блок-схем, то почти неизменно они рисуются после. Многие программистские организации с гордостью пользуются специальными программами для построения "этого незаменимого инструмента программиста" по готовой машинной программе. Я не считаю этот универсальный опыт прискорбным проявлением дурного топа, признание в котором сопровождается нервным смехом. Напротив, это свидетельство здравого смысла, урок, проливающий свет на истинную пользу блок-схем.


Единицей интерпретации в языке блок-схем является блок. Работой всего интерпретатора управляет функция, которая перемещает фокус интерпретации по блок-схеме, распознает тип блока, на который указывает фокус и запускает функцию обработки (интерпретации) соответствующего блока. После того как функция обработки блока отработает, она передает управление функции управляющей работой интерпретатора. ...

Параллельно различные формы представления алгоритма, что позволит более формально подойти к конкретному алгоритму. 2. Методические особенности изучения раздела «Алгоритм и исполнители» 2.1 Содержание раздела в стандарте Прежде всего необходимо сказать, что общеобразовательный стандарт по информатике является нормативным документом, определяющим требования: · к месту базового курса...

На псевдокоде называется структурным планом. Псевдокод удобен тем, что позволяет программисту сосредоточиться на формулировке алгоритма, не задумываясь над синтаксическими особенностями конкретного языка программирования. Описание алгоритмов с помощью блок-схем. Для разработки структуры программы удобнее пользоваться записью алгоритма в виде блок-схемы (в...




мувати їх засобами мови Turbo Pascal з використанням циклів. Завдання: розробити алгоритм, намалювати блок-схему і написати програму обчислення значення функції , розкладеної в степеневий ряд. Обчислення суми членів ряду проводити доти, доки абсолютна величина члена ряду не стане меншою від (наприклад,). При цьому порахувати кількість виконаних кроків ітерації (скільки членів ряду ввійшло в...

8.2. Блок-схемы алгоритмов

При описании алгоритмов давно и успешно используются блок-схемы (Basic Flowchart). Построение блок-схем алгоритмов регламентируется ГОСТ 19.701-90 (ИСО 5807-85) "Единая система программной документации. Схемы алгоритмов программ, данных и систем. Условные обозначения и правила выполнения" . Данный государственный стандарт составлен на основе международного стандарта "ISO 5807-85. Information processing – Documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts".

Согласно ГОСТ 19.701-90 под схемой понимается графическое представление определения, анализа или метода решения задачи. С помощью схем можно отобразить как статические, так и динамические аспекты системы. Символы, приведенные в государственном стандарте, могут использоваться в следующих типах схем :

Схемы данных – определяют последовательность обработки данных и их носители;

Схемы программ – отображают последовательность операций в программе (по сути, это и есть блок-схемы алгоритмов в традиционном понимании);

Схемы работы системы – отображают управление операциями и потоки данных в системе;

Схемы взаимодействия программ – отображают путь активации программ (модулей) и их взаимодействие с соответствующими данными;

Схемы ресурсов системы – отображают конфигурацию блоков данных и обрабатывающих блоков.

Как видно из приведенных выше типов схем, они могут использоваться не только для моделирования поведенческого аспекта, но и для задач функционального, информационного и компонентного проектирования.

При построении поведенческой модели системы используются основные принципы структурного подхода – принципы декомпозиции и иерархического упорядочения. Поведенческая модель представляет собой набор взаимосвязанных схем (диаграмм) с разным уровнем детализации, причем с каждым новым уровнем детализации система приобретает все более законченные очертания.

На схемах могут присутствовать следующие элементы графической нотации :

Символы данных – указывают на наличие данных, вид носителя или способ ввода-вывода данных;

Символы процесса – указывают операции, которые следует выполнить над данными;

Символы линий – указывают потоки данных между процессами и/или носителями данных, а также потоки управления между процессами;

Специальные символы – используются для облегчения написания и чтения схем.

Кроме деления по смысловому содержанию, каждую категорию символов (кроме специальных) делят на основные и специфические символы. Основной символ используется в тех случаях, когда точный вид процесса или носителя данных неизвестен или отсутствует необходимость в описании фактического носителя данных (процесса). Специфический символ используется в тех случаях, когда известен точный вид процесса или носителя данных и это необходимо отобразить на схеме. В следующей таблице приводятся элементы графической нотации блок-схем.

Таблица 8.1. Условные обозначения на блок-схемах

№ п/п Символ Наименование Примечания
1. СИМВОЛЫ ДАННЫХ
Основные
1.1 Данные Данные, носитель которых не определен
1.2 Запоминающее устройство (ЗУ) Данные, хранимые в виде, пригодном для автоматической обработки, носитель не определен
Специфические
1.3 ОЗУ Данные, хранящиеся в ОЗУ (оперативная память)
1.4 ЗУ с последовательным доступом Данные, хранящиеся на магнитной ленте (магнитная лента, магнитофонная кассета)
1.5 ЗУ с прямым доступом Данные, хранящиеся на жестких или гибких магнитных дисках, CD, DVD, ZIP и т.д.
1.6 Документ Данные, представляемые не в компьютерном виде (на бумаге, на пленках и т.д.)
1.7 Ручной ввод Данные, вводимые вручную с помощью клавиатуры, мыши, светового пера и т. д.
1.8 Карта Данные на перфокартах, магнитных картах, картах со считываемыми метками и т.д.
1.9 Бумажная лента Данные на бумажной ленте
1.10 Дисплей Данные, отображаемые на экране монитора, сигнальные индикаторы и т.д.
2. СИМВОЛЫ ПРОЦЕССА
Основной
2.1 Процесс Элементарная (атомарная) операция по обработке данных (например, n:=n+1)
Специфические
2.2 Предопределенный процесс (процедура) Процесс, состоящий из операций, описанных в другом месте (на другой схеме)
2.3 Ручная операция Операция, выполняемая вручную
2.4 Подготовка Подготовительные операции, выполняемые с целью модификации последующих операций (цикл с параметром )
2.5 Решение Операция с одним входом и несколькими альтернативными выходами, один из которых активизируется после проверки условия, записываемого внутри символа (операторы If-Then-Else или Case)
2.6 Параллельные действия Параллельное выполнения двух и более операций
2.7 Границы цикла Начало и конец цикла. Особенности работы цикла (инициализация, приращение, условие) записывается в начале или конце, в зависимости от того, где осуществляется его проверка (циклы с пред- или постусловием)
3. СИМВОЛЫ ЛИНИЙ
Основной
3.1 Линия Поток данных или управления
Специфические
3.2 Канал связи Передача данных по каналу связи
3.3 Пунктирная линия Альтернативная связь между двумя и более символами или для обводки комментируемого участка схемы
4. СПЕЦИАЛЬНЫЕ СИМВОЛЫ
4.1 ГОСТ Соединитель Используется для обрыва линий и их продолжения в другом месте.
Обычно используется для обозначения взаимосвязанных частей схемы на разных листах. Внутри соединителя пишется номер соединения
ИСО
4.2 Терминатор Выход во внешнюю среду или вход из внешней среды (начало и конец процесса обработки данных [в этом случае внутри пишут "начало" или "конец"], источник или пункт назначения данных, начало и конец работы предопределенного процесса)
4.3 Получатель – отправитель По функциональному назначению аналогичен символу "Терминатор"
4.4

Задание алгоритмов с помощью блок-схем оказалось очень удобным средством изображения алгоритмов и получило широкое распространение.

Блок-схема алгоритма - графическое изображение алгоритма в виде связанных между собой с помощью стрелок (линий перехода) и блоков - графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия.

В таблице приведены наиболее часто употребляемые символы.

Символы блок-схемы
Название символа Обозначение и пример заполнения Пояснение
Процесс Вычислительное действие или последовательность действий
Решение Проверка условий
Модификация Начало цикла
Предопределенный процесс Вычисления по подпрограмме, стандартной подпрограмме
Ввод-вывод Ввод-вывод в общем виде
Пуск-остановка Начало, конец алгоритма, вход и выход в подпрограмму
Документ Вывод результатов

Блок «» применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок «» используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок «» используется для организации циклических конструкций. (Слово «модификация» означает «видоизменение, преобразование»). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок «» используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Для примера приведем блок-схемы алгоритма нахождения максимального из двух значений:

Блок-схема алгоритма

Пример блок-схемы алгоритма вычисления факториала числа N

Схе́ма - графическое представление определения, анализа или метода решения задачи, в котором используются символы для отображения операций, данных, потока, оборудования и т. д. (ГОСТ 19.701-90 ).

Блок-схема - распространенный тип схем, описывающий алгоритмы или процессы, изображая шаги в виде блоков различной формы, соединенных между собой стрелками.

Стандарты выполнения

Правила выполнения схем определяются следующими документами:

Для программной документации:

Данные документы в частности регулируют способы построения схем и внешний вид их элементов.

Основные элементы схем алгоритма

Наименование Обозначение Функция
Терминатор
(пуск-останов)
Элемент отображает вход из внешней среды или выход из нее (наиболее частое применение − начало и конец программы). Внутри фигуры записывается соответствующее действие.
Процесс Выполнение одной или нескольких операций, обработка данных любого вида (изменение значения данных, формы представления, расположения). Внутри фигуры записывают непосредственно сами операции, например, операцию присваивания : a = 10*b + c .
Решение Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента. Вход в элемент обозначается линией, входящей обычно в верхнюю вершину элемента. Если выходов два или три то обычно каждый выход обозначается линией, выходящей из оставшихся вершин (боковых и нижней). Если выходов больше трех, то их следует показывать одной линией, выходящей из вершины (чаще нижней) элемента, которая затем разветвляется. Соответствующие результаты вычислений могут записываться рядом с линиями, отображающими эти пути. Примеры решения: в общем случае − сравнение (три выхода: > , < , = ); в программировании − условные операторы if (два выхода: true , false ) и case (множество выходов).
Предопределенный процесс Символ отображает выполнение процесса, состоящего из одной или нескольких операций, который определен в другом месте программы (в подпрограмме, модуле). Внутри символа записывается название процесса и передаваемые в него данные. Например, в программировании − вызов процедуры или функции.
Данные
(ввод-вывод)
Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).
Граница цикла Символ состоит из двух частей − соответственно, начало и конец цикла − операции, выполняемые внутри цикла, размещаются между ними. Условия цикла и приращения записываются внутри символа начала или конца цикла − в зависимости от типа организации цикла. Часто для изображения на блок-схеме цикла вместо данного символа используют символ решения, указывая в нем условие, а одну из линий выхода замыкают выше в блок-схеме (перед операциями цикла).
Соединитель Символ отображает выход в часть схемы и вход из другой части этой схемы. Используется для обрыва линии и продолжения ее в другом месте (пример: разделение блок-схемы, не помещяющейся на листе). Соответствующие соединительные символы должны иметь одно (при том уникальное) обозначение.
Комментарий Используется для более подробного описания шага, процесса или группы процессов. Описание помещается со стороны квадратной скобки и охватывается ей по всей высоте. Пунктирная линия идет к описываемому элементу, либо группе элементов (при этом группа выделяется замкнутой пунктирной линией). Также символ комментария следует использовать в тех случаях, когда объем текста в каком-либо другом символе (например, символ процесса, символ данных и др.) превышает его объем.

Описание других элементов схем можно найти в соответствующих ГОСТ (указаны выше).

Порядок выполнения действий задается путем соединения вершин дугами, что позволяет рассматривать блок-схемы не только как наглядную интерпретацию алгоритма, удобную для восприятия человеком, но и как взвешенный ориентированный граф . Однако не любой ориентированный граф, составленный из вершин указанных выше типов, является корректным алгоритмом . Например, из операторной вершины не может выходить более одной дуги. Поэтому на практике обычно ограничиваются рассмотрением подкласса граф-схем алгоритмов, удовлетворяющих свойствам безопасности, живости и устойчивости.

Дракон-схемы

В последнее время появились структурные, математически строгие блок-схемы, которые называются «дракон-схемы». С появлением дракон-схем блок-схемы стали терять своё значение, так как они во всех отношениях уступают дракон-схемам.

Примечания

См. также

  • Диаграмма связей

Wikimedia Foundation . 2010 .

Смотреть что такое "Блок-схема алгоритма" в других словарях:

    блок-схема алгоритма - контрольная диаграмма — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы контрольная диаграмма EN control diagram …

    блок-схема - — блок схема [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и электроэнергетике. 2 е издание М.: РУССО, 1995 616 с.] блок схема Условное изображение алгоритма,… … Справочник технического переводчика

    блок-схема (программы или алгоритма) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN flow diagram … Справочник технического переводчика

    В программировании графическое представление программы или алгоритма с использованием стандартных графических элементов (прямоугольников, ромбиков, трапеций и др.), обозначающих команды, действия, данные и т.п. По английски: Flowchart См. также:… … Финансовый словарь

    Блок-схема - – условное изображение алгоритма, программы для ЭВМ, процесса принятия решения, документооборота и т.п., предназначенное для выявления их структуры и общей последовательности операций. Пример Б. с. см. в статье Алгоритм … Экономико-математический словарь

    У этого термина существуют и другие значения, см. Блок. Пример блок схемы алгоритма вычисления факториала числа N Схема графическое представление определения, анализа или метода решения задачи, в котором используются символ … Википедия

    БЛОК-СХЕМА - условное изображение алгоритма решения задачи, документооборота, последовательности выполнения рабочих операций или процедур с помощью стрелок, соединительных линий и геометрических фигур различной формы, содержащих внутри символы управления или… … Большой экономический словарь

    поэтапная блок-схема - представляет собой подробное графическое изображение структурной организации алгоритма, в котором каждый этап процесса переработки данных представляется в виде пронумерованных геометрических фигур (или блоков) … Толковый переводоведческий словарь

    Блок схема алгоритма Дейкстры. Алгоритмы поиска на гр … Википедия

    аттестация информационных технологий в области качества служебной информации - Официальное подтверждение органом по сертификации или другим специально уполномоченным органом наличия необходимых и достаточных условий применения информационной технологии, обеспечивающих стабильность выполнения норм качества служебной… … Справочник технического переводчика

Книги

  • Императивы эффективности производства , Николай Александрович Жданкин. На основе проведенного исследования рассматриваются вопросы разработки стратегии крупной компании в металлургии. Приведены примеры анализа внутренней и внешнейсреды предприятия. Произведена… электронная книга

Разработка блок-схемы алгоритма решения задачи

Цель работы : изучение графического способа описания алгоритма решения задачи.

Задачи работы :

    ознакомиться с основными способами представления алгоритмов;

    освоить графический способ описания алгоритмов.

1.1. Порядок выполнения работы

    Изучите теоретические сведения по теме данного раздела (п. 1.2)

    Ознакомьтесь с постановкой задачи (п. 1.3). Вариант задания соответствует вашему номеру в списке группы.

    Разработайте блок-схему алгоритма решения поставленной задачи.

    Ответьте на контрольные вопросы.

    Подготовьте отчет о выполнении практической работы, который должен содержать:

    титульный лист;

    цель практической работы;

    постановку задачи;

    блок-схему алгоритма решения поставленной задачи;

    ответы на контрольные вопросы;

    выводы по практической работе.

1.2. Общие сведения

Одним из наиболее трудоемких этапов решения задачи на ЭВМ является разработка алгоритма.

Под алгоритмом понимается точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к искомому результату.

Основными характерными свойствами алгоритма являются:

    детерминированность (определенность) – при заданных исходных данных обеспечивается однозначность искомого результата;

    массовость – пригодность для задач данного типа при исходных данных, принадлежащих заданному подмножеству;

    результативность – реализуемый вычислительный процесс выполняется за конечное число этапов с выдачей осмысленного результата;

    дискретность – возможность разбиения алгоритма на отдельные этапы, выполнение которых не вызывает сомнений.

Выделяют следующие типы вычислительных процессов :

    Линейный вычислительный процесс.

Для получения результата необходимо выполнить некоторые операции в определенной последовательности.

    Разветвленный вычислительный процесс.

Конкретная последовательность операций зависит от значений одного или нескольких параметров. Например, если дискриминант квадратного уравнения не отрицателен, то уравнение имеет два корня, а если отрицателен, то действительных корней нет.

    Циклический вычислительный процесс

Для получения результата некоторую последовательность действий необходимо выполнить несколько раз. Например, для того, чтобы получить таблицу значений функции на заданном интервале изменения аргумента с заданным шагом, необходимо соответствующее количество раз определить следующее значение аргумента и посчитать для него значение функции.

В свою очередь, существуют также несколько типов циклического вычислительного процесса , а именно:

    Счетные циклы (циклы с заданным количеством повторений) – ­­ это циклические процессы, для которых количество повторений известно.

    Итерационные циклы – это циклические процессы, завершающиеся по достижении или нарушении некоторых условий.

    Поисковые циклы – это циклические процессы, из которых возможны два варианта выхода:

Выход по завершению процесса;

Досрочный выход по какому-либо дополнительному условию.

По типу вычислительного процесса, реализуемого алгоритмом, различают:

Алгоритмы линейной структуры;

Алгоритмы разветвленной структуры;

Алгоритмы циклической структуры.

Алгоритмы решения практических задач обычно имеют комбинированную структуру, то есть включают в себя все три типа вычислительных процессов.

К изобразительным средствам описания алгоритмов относятся следующие основные способы их представления:

Словесный (записи на естественном языке);

Структурно-стилизованный (записи на алгоритмическом языке и псевдокод);

Графический (изображение схем и графических символов);

Программный (тексты на языках программирования).

Словесный способ описания алгоритма представляет собой описание последовательных пронумерованных этапов обработки данных и задается в произвольном изложении на естественном языке.

Пример 1.1.

Алгоритм сложения двух чисел (a и b).

    Спросить, чему равно число a.

    Спросить, чему равно число b.

    Сложить a и b, результат присвоить с.

    Сообщить результат с.

Достоинством данного способа является простота описания, а к недостаткам можно отнести то, что такой подход многословен и не имеет строгой формализации, поэтому допускает неоднозначность толкования отдельных предписаний, в силу чего словесный способ представления алгоритма не имеет широкого распространения.

Для строгого задания различных структур данных и алгоритмов их обработки требуется иметь такую систему формальных обозначений и правил, чтобы смысл всякого используемого предписания трактовался точно и однозначно. Соответствующие системы правил называются языками описаний . К ним относятся алгоритмические языки (псевдокоды), блок-схемы и языки программирования.

Структурно-стилизованный способ описания алгоритма основан на записи алгоритмов в формализованном представлении предписаний, задаваемых путем использования ограниченного набора типовых синтаксических конструкций, называемых часто псевдокодами.

Достоинством псевдокодов является близость к языкам программирования, а недостатками, в свою очередь, являются сложность освоения и невозможность непосредственного ввода алгоритма для решения на ЭВМ, т.е. необходимость перевода на язык программирования.

Графический способ описания алгоритма предполагает, что для описания структуры алгоритма используется совокупность графических изображений (блоков), соединяемых линиями передачи управления. Такое изображение называется методом блок-схем .

Блок-схема алгоритма – это графическое представление хода решения задачи. Блок-схема состоит из блоков, соединенных линиями, а блоки изображаются в виде геометрических фигур, называемых символами. Внутри символов записываются указания о выполняемых блоком функциях – формулы, текст, логические выражения. Вид символов и правила выполнения блок-схем стандартизированы – ГОСТ 19.701-90 содержит перечень символов, их наименования, отображаемые функции, формы и размеры, а также правила выполнения схем. При разработке алгоритма каждое действие обозначают соответствующим блоком, показывая их последовательность линиями со стрелками на конце. Названия, обозначения и назначение элементов блок-схем приводится на рис. 1.1.

Рисунок 1.1 – Основные блоки

Следует упомянуть некоторые основные правила выполнения блок-схем, которыми надлежит руководствоваться при графическом описании алгоритмов. Начало алгоритмов отмечается символом "Терминатор", из которого выходит одна линия. В нем записывается слово "Пуск" ("Начало"). Конец алгоритма отмечается этим же символом, в котором записывается слово "Останов" ("Конец"). В этом случае данный символ не имеет ни одной выходной линии, а на него может замыкаться одна или более линий. Символ “Процесс” может иметь одну или несколько входных линий и только одну выходную. Внутри символа может быть записано несколько предписаний – в этом случае они выполняются в порядке записи. Представление отдельных операций достаточно свободно. Для обозначения вычислений можно использовать математические выражения, для пересылки данных – стрелки, для других действий – пояснения на естественном языке, например, А: = Х + 4; i: = i + 1, ––> B.

Линии потока должны быть параллельны сторонам листа. Основные направления линий потока – сверху вниз и слева направо – стрелкой не обозначаются. В других случаях на конце линии потока ставится стрелка, а в месте слияния линий ставится точка. Если блок-схема не умещается на одном листе, используют соединители. При переходе на другой лист или получении управления с другого листа в комментарии указывается номер листа, например "с листа 3" "на лист 1".

Для записи алгоритма любой сложности достаточно трех базовых структур :

    следование - обозначает последовательное выполнение действий (рис. 1.2, а);

    ветвление - соответствует выбору одного из двух вариантов действий (рис. 1.2, б);

    цикл-пока - определяет повторение действий, пока не будет нарушено условие, выполнение которого проверяется в начале цикла (рис. 1.2, в).

Рисунок 1.2 – Базовые алгоритмические структуры

Кроме этого, при описании алгоритмов используются дополнительные алгоритмические структуры , производные от базовых, каждая из которых может быть реализована через базовые структуры:

    выбор - выбор одного варианта из нескольких в зависимости от значения некоторой величины (рис. 1.3, а, б);

    цикл-до - повторение некоторых действий до выполнения заданного условия, проверка которого осуществляется после выполнения действий в цикле (рис. 1.3, в, г);

    цикл с заданным числом повторений (счетный цикл ) повторение некоторых действий указанное число раз (рис. 1.3, д, е).

Рисунок 1.3 – Реализация дополнительных алгоритмических структур

через базовые структуры

Рассмотрим примеры графического описания алгоритмов различных типов: линейного, разветвляющегося, циклического и комбинированного (рис. 1.4 – 1.7).

Пример 1.2. Линейный алгоритм.

Алгоритм вычисления значения выражения K=3b+6а (рис. 1.4) .

Рисунок 1.4 – Пример блок-схемы линейного алгоритма

Пример 1.3. Разветвляющийся алгоритм.

Алгоритм, определяющий, пройдет ли график функции y=3x+4 через точку с координатами x1,y1 (рис. 1.5).

Рисунок 1.5 – Пример блок-схемы разветвляющегося алгоритма

Пример 1.4. Циклический алгоритм.

Алгоритм, определяющий факториал натурального числа n (рис. 1.6):

n ! = 1*2*3*….*(n -1)* n

5!=1*2*3*4*5=120

Рисунок 1.6 – Пример блок-схемы циклического алгоритма

Пример 1.5. Комбинированный алгоритм.

Необходимо определить наибольший общий делитель двух натуральных чисел А и В.

Для решения поставленной задачи используем алгоритм Евклида, который заключается в последовательной замене большего из чисел на разность большего и меньшего, пока числа не станут равны. Рассмотрим данный алгоритм на двух примерах.

Пример (а): А=225, В=125. Применяя алгоритм Евклида, получаем для А и В наибольший общий делитель, равный 25.

Пример (б): А=13, В=4. В этом случае наибольший общий делитель А и В равен 1.

B

50-25=25

Блок-схема алгоритма Евклида для нахождения наибольшего общего делителя двух натуральных чисел показана на рис. 1.7.

Рисунок 1.7 – Пример блок-схемы комбинированного алгоритма

Блок-схема алгоритма детально отображает все особенности разработанного алгоритма, но иногда такой высокий уровень детализации не позволяет выделить суть алгоритма. В этих случаях для описания алгоритма используют псевдокод . Псевдокод базируется на тех же основных структурах, что и структурные схемы алгоритма (табл. 1.1).

Пример 1.6. Описание алгоритма Евклида на псевдокоде .

Алгоритм Евклида:

Ввести А,В

цикл-пока А ≠ В

если А > В

то А:= А - В

иначе В:= В - А

все - если

все-цикл

Вывести А

Конец алгоритма.

Таблица 1.1 – Пример псевдокода для записи базовых алгоритмических структур

Структура

Псевдокод

Структура

Псевдокод

Следование

Выбор

Все-выбор

Ветвление

Если

заданным

количеством повторений

Для =

иначе

Все - если

Все-цикл

Цикл-пока

Цикл-пока

Выполнять

Все-цикл

1.3. Задачи для составления блок-схем алгоритмов

    Дано целое число m>1.

Получить наименьшее целое k, при котором 4 k >m.

Вычислить произведение

    Дано целое число n.

Получить наименьшее число вида 2 r , превосходящее n (r - натуральное).

    Даны целые числа n, k (n  k  0).

Вычислить.

    Дано натуральное число n и действительное число a.

Вычислить произведение .

    Дано натуральное число n.

Вычислить сумму .

    Даны действительное число х и натуральное число n.

Вычислить, не используя операцию возведения в степень.

    Дано натуральное число n.

Вычислить сумму:

    Даны действительные числа x и a, натуральное n.

Вычислить:

Вычислить:

    Даны натуральные числа n, m. Получить сумму m последних цифр числа n.

    Пусть n- натуральное число. Вычислить сумму.

    Дано натуральное число n.

Вычислить сумму:

Контрольные вопросы

    Дайте определение алгоритма.

    Перечислите основные свойства алгоритмов и раскройте их сущность.

    Как подразделяются алгоритмы по типу реализуемого вычислительного процесса?

    Какие способы описания алгоритмов вам известны?

    Что понимается под графическим способом описания алгоритмов? В чем состоит преимущество данного способа перед словесным описанием алгоритма?

    Курсовая работа >> Информатика

    Весов ребер оставного дерева. 2.4 Блок -схема Рисунок 7 – Блок -схема алгоритма решения задачи 2.5 Обоснование выбора языка программирования Турбо... , интегрированную среду, намного ускоряющую процесс разработки программ. Этот программный продукт прошел...

  1. Алгоритмы и основы программирования

    Практическая работа >> Информатика, программирование

    Составление программ решения различных задач на электронных вычислительных машинах; наука, занимающаяся разработкой методов... . Блок -схема данного линейного алгоритма показана на рисунке 4. Пример 1. Вычислить при x=2,3 В общем случае, алгоритм решения ...

  2. Построение блок схем алгоритмов . Алгоритмические языки высокого уровня

    Реферат >> Информатика

    Подход к решению поставленных задач . Задачи реализованы на трех различных языках программирования. Блок -схемы алгоритмов , листинги программ... время. Алгоритм решения задачи получается более эффективным, если ис­пользовать метод пошаговой разработки , суть...

  3. Системное и программное обеспечение

    Реферат >> Информатика

    ... : Разработка блок схемы алгоритма решения задачи по контролю знаний слушателей ФПК. ОписаниеФФффуввыа блоков схемы алгоритма решения задачи . Блок 1 ... – ввести имя (обозначение) задачи , ввести...