Амплитудно-частотная характеристика операционного усилителя. Параметры и характеристики операционных усилителей Идеальный операционный усилитель

06.01.2024

Амплитудная характеристика усилителя представляет собой за­висимость установившегося значения выходного напряжения от вход­ного. График амплитудной характеристики строится в линейном мас­штабе, рис.2.6.

Рис.2.6. Амплитудная характеристика.

Угол наклона амплитудной характеристики зависит от коэффициента усиления и определяется =arctgК . В рабочей области входных напряжений она обычно прямолинейна. При больших значениях амплитудная характеристика искривляется из-за пе­регрузки усилительного элемента, при малых значениях она от­клоняется вследствие наличия собственных помех усилителя. Обычно сигнал, поступающий на усилитель, не остается неизменным, а ме­няется от U с min до U с max .

Отношение U с max /U с min =Д с называется динамическим диапа­зоном сигнала, который часто задается в децибелах

Д сдБ =20lgU с max /U с min (2.16)

Из амплитудной характеристики видно, что усилитель может усиливать сигнал при U с > U вх min и U с < U в xmax .

Отношение U вх max /U вх min =Д у есть динамический диапазон усилителя. Для безыскаженного усиления должно быть удовлетворено следующее соотношение Д у >Д с .

Собственные помехи U n состоят из нескольких составляющих: наводки, фон и внутренние шумы.

Наводками называют посторонние шумы напряжения, наводимые на цепи усилителя соседними приборами. Устранение наводок достигает­ся экранированием.

Фоном называют напряжение в выходной цепи усилителя с часто­той, кратной частоте сети переменного тока, питающей усилитель. Для устранения фона необходимо улучшить сглаживание напряжения источника питания с помощью стабилизаторов напряжения. Внутренние шумы рассмотрены в последней лекции.

Коэффициент полезного действия

Этот коэффициент равен отношению мощности на выходе усилителя к мощности, отдаваемой источником энергии с напряжением E: η = Pвых/Po, где Po = E·I0 (I0 постоянная составляющая тока).

5 . Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л.Джули (США). Он содержал два двойных электровакуумных триода. Первые ОУ представляли собой громоздкие и дорогие устройства. С заменой ламп транзисторами операционные усилители стали меньше, дешевле, надежнее, и сфера их применения расширилась. Первые операционные усилители на транзисторах появились в продаже в 1959 году. Р.Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были изобретены в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУ mА702, имевший рыночный успех, был разработан Р.Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Операционные усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению.

Операционные усилители представляют собой усилители постоянного тока с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на отдельных транзисторах. Поэтому операционные усилители почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.

Uвых = U1 - U2

На рис.1 дано схемное обозначение операционного усилителя. Входной каскад его выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа. В дальнейшем будем, при необходимости, обозначать неинвертирующий вход буквой p (positive - положительный), а инвертирующий - буквой n (negative - отрицательный). Выходное напряжение Uвых находится в одной фазе с разностью входных напряжений:

Чтобы обеспечить возможность работы операционного усилителя как с положительными, так и с отрицательными входными сигналами, следует использовать двухполярное питающее напряжение. Для этого нужно предусмотреть два источника постоянного тока, которые, как это показано на рис. 1, подключаются к соответствующим внешним выводам ОУ. Обычно интегральные операционные усилители работают с напряжением питания +/-15 В. В дальнейшем, рассматривая схемы на ОУ, мы, как правило, не будем указывать выводы питания.

6. Для уяснения принципов действия схем на ОУ и приближенного их анализа оказывается полезным ввести понятие идеального операционного усилителя. Будем называть идеальным операционный усилитель, который имеет следующие свойства:

Бесконечно большой дифференциальный коэффициент усиления по напряжению KU=DUвых /D(U1 - U2) (у реальных ОУ от 1 тыс. до 100 млн.);

Нулевое напряжение смещения нуля Uсм, т.е. при равенстве входных напряжений выходное напряжение равно нулю (у реальных ОУ Uсм, приведенное ко входу, находится в пределах от 5 мкВ до 50 мВ);

Нулевые входные токи (у реальных ОУ от сотых долей пА до единиц мкА);

Нулевое выходное сопротивление (у реальных маломощных ОУ от десятков Ом до единиц кОм);

Коэффициент усиления синфазного сигнала равен нулю;

Мгновенный отклик на изменение входных сигналов (у реальных ОУ время установления выходного напряжения от единиц наносекунд до сотен микросекунд).

Типичная логарифмическая амплитудно-частотная характеристика операционного усилителя

7. Основные схемы включения операционного усилителя:

1.Дифференциальное включение

2.Инвертирующее включение

3.Неинвертирующее включение

На рис. 4 приведена схема дифференциального включения ОУ. Найдем зависимость выходного напряжения ОУ от входных напряжений. Вследствие свойства а) идеального операционного усилителя разность потенциалов между его входами p и n равна нулю. Соотношение между входным напряжением U1 и напряжением Up между неинвертирующим входом и общей шиной определяется коэффициентом деления делителя на резисторах R3 и R4:

Up = U1R4/(R3+R4) (3)

Поскольку напряжение между инвертирующим входом и общей шиной Un = Up, ток I1 определится соотношением:

I1 = (U2 - Up) / R1 (4)

Вследствие свойства c) идеального ОУ I1=I2. Выходное напряжение усилителя в таком случае равно:

Uвых = Up - I1R2 (5)

Подставив (3) и (4) в (5), получим:

(6)

При выполнении соотношения R1R4 = R2R3,

Uвых = (U1 - U2)R2 / R1 (7)

8. При инвертирующем включении неинвертирующий вход ОУ соединяется с общей шиной (рис. 5).

Рис. 5. Инвертирующее включение ОУ

Таким образом, выходное напряжение усилителя в инвертирующем включении находится в противофазе по отношению ко входному. Коэффициент усиления входного сигнала по напряжению этой схемы в зависимости от соотношения сопротивлений резисторов может быть как больше, так и меньше единицы.

Найдем входное сопротивление схемы. Поскольку напряжение на неинвертирующем входе относительно общей шины равно нулю, согласно свойству а) идеального ОУ входной ток схемы I1 = U2 / R1. Следовательно, входное сопротивление схемы Rвх = R1. Поскольку напряжение на неинвертирующем входе усилителя равно нулю, а согласно свойству а) идеального ОУ разность потенциалов между его входами равна нулю, то инвертирующий вход в этой схеме иногда называют виртуальным (т.е. воображаемым) нулем.

9. Неинвертирующее включение

При неинвертирующем включении входной сигнал подается на неинвертирующий вход ОУ, а на инвертирующий вход через делитель на резисторах R1 и R2 поступает сигнал с выхода усилителя (рис. 6). Здесь коэффициент усиления схемы K найдем, положив в (6) U2 = 0, R3 = 0, R4 бесконечно велико. Получим:

Рис. 6. Неинвертирующее включение ОУ

Как видно, здесь выходной сигнал синфазен входному. Коэффициент усиления по напряжению не может быть меньше единицы. В предельном случае, если выход ОУ накоротко соединен с инвертирующим входом, этот коэффициент равен единице. Такие схемы называют неинвертирующими повторителями и изготавливают серийно в виде отдельных ИМС по нескольку усилителей в одном корпусе. Входное сопротивление этой схемы в идеале - бесконечно. Ниже будет показано, что у повторителя на реальном операционном усилителе это сопротивление конечно, хотя и весьма велико.

10. Внутренняя структура операционных усилителей

Для достаточной устойчивости и выполнения математических операций над сигналами с высокой точностью реальный операционный усилитель должен обладать следующими свойствами:

высоким коэффициентом усиления по напряжению, в том числе и по постоянному;

малым напряжением смещения нуля;

малыми входными токами;

высоким входным и низким выходным сопротивлением;

высоким коэффициентом ослабления синфазной составляющей (КОСС);

Операционный усилитель должен быть усилителем постоянного тока (УПТ) с высоким коэффициентом усиления по напряжению и, следовательно, содержать несколько каскадов усиления напряжения. Как будет показано ниже, с ростом числа каскадов усиления напряжения увеличивается опасность нарушения устойчивости ОУ с обратными связями и усложняются цепи коррекции. Даже усилители с тремя каскадами усиления напряжения (например, 140УД2, 153УД1, 551УД1) имеют сложные схемы включения, и разработчики стараются их не применять. Это вызывает необходимость применения усилительных каскадов с очень высоким коэффициентом усиления по напряжению. Большие трудности проектирования усилителей постоянного тока связаны также со смещением нуля ОУ.

Смещение нуля ОУ проявляется в том, что при входном дифференциальном напряжении, равном нулю, выходное напряжение не равно нулю. Обычно определяют смещение нуля, приведенное ко входу, как такое дифференциальное напряжение, которое нужно приложить ко входу усилителя, чтобы его выходное напряжение было бы равно нулю. Смещение нуля по сути является аддитивной погрешностью выполнения математических действий ОУ над входными сигналами. Смещение нуля может иметь существенные температурный и временнoй дрейфы. Операционные усилители на дискретных транзисторах имели неудовлетворительное смещение нуля, связанное с неидентичностью транзисторов. Только применение и усовершенствование интегральной технологии, позволившей изготавливать парные транзисторы дифференциального каскада в едином производственном цикле и на расстоянии несколько микрон друг от друга, привело к существенному снижению смещения нуля и дрейфов.

Блок-схема операционного усилителя, в большой мере удовлетворяющего требованиям, предъявляемым к ОУ, приведена на рис. 7.

Рис. 7. Блок-схема ОУ

11. Повысить параметры дифференциального усилителя в принципе можно простым увеличением сопротивлений резисторов R к и R э, но при этом уменьшится ток покоя транзисторов и, как следствие, ухудшится температурная и временнa я стабильность усилителя. Эффективный путь улучшения характеристик усилителя состоит в замене линейных резисторов источниками тока, обладающими высоким динамическим сопротивлением при достаточно больших токах. В частности, в качестве динамической нагрузки в цепи коллекторов транзисторов дифференциального усилителя широко используется так называемое токовое зеркало , схема которого показана на рис. 9.

Рис. 9. Схема токового зеркала

При таком включении U кэ =U бэ >U кэ.нас. Следовательно, транзистор VТ 1 ненасыщен. Поскольку U бэ1 =U бэ2 , то при хорошо согласованных по параметрам транзисторах I б1 =I б2 =I б и I к1 =I к2 =B Iб, где B - статический коэффициент передачи тока. При этом

I вх = BI б +2I б и I вых = BI б

I вых = BI вх /(B+2) I вх

Токовое зеркало - генератор тока, управляемый током. Чаще всего выходной ток равен управляющему или отличается от него в целое число раз. Токовое зеркало – это схема, предназначенная для копирования через одно активное устройство, контролируя ток в другом активном устройстве цепи, сохраняя постоянный ток на выходе, независимо от нагрузки. "Копируемый" ток может быть и иногда является переменным током. Концептуально, идеальное токовое зеркало – это просто идеальный инвертируюший операционный усилитель, который также меняет направление тока, или это управляемый током источник тока.Токовое зеркало используется для смещения токов и питания активных нагрузок в цепях. Токовые зеркала на транзисторах чрезвычайно широко используются в аналоговых интегральных схемахблагодаря своей простоте (требуются всего два согласованных транзистора) и эффективности. Токовые зеркала обычно используются для того, чтобы «скопировать» один управляющий ток на множество каскадов, и тем самым задать их ток покоя.

Есть три основные характеристики, которые характеризуют текущее зеркало. Первыми из них являются коэффициент передачи (в случае операционного усилителя) или величина выходного тока. Во-вторых, его выходное сопротивление для переменного тока, которое определяет, насколько выходной ток меняется в зависимости от напряжения, приложенного к зеркалу. Третья спецификация – это минимальное падение напряжения на выходе зеркала, необходимого, чтобы заставить ее работать должным образом. Это минимальное напряжение продиктовано необходимостью поддерживать выходной транзистор зеркала в активном режиме.

Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, то есть выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора T1, напряжение Uвэ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией.Практически ток может изменяться приблизительно на 25 % в диапазоне устойчивой работы схемы. широко используют при проектировании интегральных схем

Эффект Миллера - увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении. Эффект наиболее явно проявляется в усилителях напряжения, построенных на радиолампах, на биполярных и полевых транзисторах, микросхемах.

Так при коэффициенте усиления по напряжению эффективная электрическая ёмкость, приведённая к взаимной ёмкости между входом и шиной питания, увеличится при включении в раз.

Эффект Миллера в биполярных транзисторах, в схемах с общим эмиттером, где напряжение усиливается в β раз, приводит к значительному увеличению эффективной ёмкости между базой и коллектором (ёмкость Миллера). При этом ухудшаются динамические свойства каскада. Например, для каскада на входе, транзистор сложнее выключить, чем включить. Появляется нагрузочная нелинейность. В радиотехнике увеличивается влияние на предыдущие каскады. В быстродействующих импульсных схемах эффект Миллера может приводить к появлению сквозных токов.

Эффект Миллера может быть значительно ослаблен схемотехническими модификациями. Например, каскодный способ включения транзисторов позволяет значительно уменьшить эффект Миллера. В импульсных и силовых схемах для подавления эффекта используется ряд других способов (схема Бейкера, форсирующая RC-цепь и др).

12. Стандартная схема операционного усилителя

Операционные усилители универсального применения должны обеспечивать значительно больший дифференциальный коэффициент усиления, чем способен дать один каскад. Поэтому они строятся в основном по двухкаскадной схеме. Упрощенная схема "классического" двухкаскадного ОУ mА741 (полная схема включает 24 транзистора) приведена на рис. 10.

Входной каскад выполнен по схеме дифференциального усилителя на p-n-p транзисторах Т 1 и Т 2 . В качестве нагрузки использовано токовое зеркало на n-p-n транзисторах Т 3 и Т 4 . Для выходного тока входного каскада, следовательно, можно записать следующее соотношение:

I д = I к2 -I к1

Рис. 10. Упрощенная схема двухкаскадного ОУ mА741

Благодаря тому, что выходным сигналом дифференциального каскада является разностный ток, синфазные изменения коллекторных токов входных транзисторов взаимно компенсируются, что значительно ослабляет синфазные входные сигналы.

Источник тока эмиттеров выполнен на транзисторе Т 9 . В некоторых ОУ (например, 140УД12) для этого также используется токовое зеркало, причем его входной ток задается сопротивлением внешнего резистора и может им программироваться, что позволяет регулировать параметры ОУ, в частности, потребляемый им ток.

Вторую ступень усиления образует каскад с общим эмиттером на транзисторе Т 6 . Он имеет в качестве нагрузки источник тока на транзисторе Т 10 . Для повышения входного сопротивления этого каскада на его входе включен эмиттерный повторитель на транзисторе Т 5 . Конденсатор С к обеспечивает операционному усилителю частотную характеристику вида, приведенного на рис. 3.

Выходной каскад представляет собой двухтактный комплементарный эмиттерный повторитель на транзисторах Т 7 , Т 8 . Напряжение на участке цепи из двух последовательных диодов, включенных в прямом направлении, обеспечивает малый начальный ток покоя этих транзисторов (режим класса АВ), что позволяет устранить переходные искажения сигнала. Такая схема обеспечивает симметрию выходного сопротивления ОУ при различной полярности выходного напряжения. Как правило, выходной каскад включает цепи защиты от короткого замыкания выхода.

13 . Линейные аналоговые вычислительные схемы на ОУ

Современные цифровые вычислительные машины позволяют с высокой точностью выполнять широкий круг математических операций с числами. Однако, в измерительных и управляющих системах величины, подлежащие обработке, как правило, представляют собой непрерывные сигналы, например, изменяющиеся значения электрического напряжения. В этих случаях приходится применять аналого-цифровые и цифро-аналоговые преобразователи. Такой подход оправдывает себя только тогда, когда требования к точности вычислений настолько высоки, что не могут быть обеспечены с помощью аналоговых вычислителей. Существующие аналоговые вычислители позволяют получить точность не свыше 0,1%. Ниже рассмотрены наиболее важные аналоговые вычислительные схемы на ОУ. Обычно мы будем полагать операционные усилители идеальными. При высоких требованиях к точности выполнения математических операций необходимо учитывать также свойства реальных усилителей.

Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения - выполнением различных операций над аналоговыми сигналами (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.

Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.

Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (K и ОУ =∞), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.

На рисунке 6.1 приведено два варианта условных обозначений ОУ - упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).

Рисунок 6.1. Условные обозначения ОУ


На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.


Рисунок 6.2. Структурная схема ОУ


Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.


Рисунок 6.3. Схема простого ОУ


Данная схема содержит входной ДУ (VT 1 и VT 2) с токовым зеркалом (VT 3 и VT 4), промежуточные каскады с ОК (VT 5) и с ОЭ (VT 6), и выходной токовый бустер на транзисторах VT 7 и VT 8 . ОУ может содержать цепи частотной коррекции (C кор), цепи питания и термостабилизации (VD 1 , VD 2 и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.

6.2. Основные параметры и характеристики ОУ

Основным параметром ОУ коэффициент усиления по напряжению без обратной связи K u ОУ , называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается K u ОУ 0 и может достигать нескольких десятков и сотен тысяч.

Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

◆ напряжение смещения нуля U см ;

◆ температурная чувствительность напряжения смещения нуля dU см /dT ;

◆ ток смещения ΔI вх ;

◆ средний входной ток I вх ср .

Входные и выходные цепи ОУ представляются входным R вхОУ и выходным R выхОУ сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток I выхОУ и минимальное сопротивление нагрузки R н min , а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.


Рисунок 6.4. Простая линейная макромодель ОУ


Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=20lg·(ΔE U вх ). Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

К энергетическим параметрам ОУ относятся напряжение источников питания ±E, ток потребления (покоя) I П и потребляемая мощность. Как правило, I П составляет десятые доли - десятки миллиампер, а потребляемая мощность, однозначно определяемая I П , единицы - десятки милливатт.

К максимально допустимым параметрам ОУ относятся:

◆ максимально возможное (неискаженное) выходное напряжение сигнала U вых max (обычно чуть меньше Е);

◆ максимально допустимая мощность рассеивания;

◆ рабочий диапазон температур;

◆ максимальное напряжение питания;

◆ максимальное входное дифференциальное напряжение и др.

К частотным параметрам относится абсолютная граничная частота или частота единичного усиления f T (F 1), т.е. частота, на которой K u ОУ =1. Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей U вых =f (U вх ) для инвертирующего и неинвертирующего входов.

Когда на обоих входах ОУ U вх =0, то на выходе будет присутствовать напряжение ошибки U ош , определяемое точностными параметрами ОУ (на рисунке 6.5 U ош не показано ввиду его малости).


Рисунок 6.5. АХ ОУ


Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, K u ОУ =φ(lg f ). Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

Рисунок 6.6. ЛАЧХ и ЛФЧХ ОУ К140УД10


Частотную зависимость K u ОУ можно представить в виде:

Здесь τ в постоянная времени ОУ, которая при M в =3 дБ определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6);

ω в = 1/τ в = 2πf в .

Заменив в выражении для K u ОУ τ в на 1/ω в , получим запись ЛАЧХ:

На НЧ и СЧ K u ОУ =20lgK u ОУ 0 , т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад K u ОУ происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при ω>>ω в можно упростить выражение для ЛАЧХ:

K u ОУ = 20lgK u ОУ 0 – 20lg(ω/ω в ).

Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения ω в (f в ). Разница между реальной ЛАЧХ и идеальной на частоте f в составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде .

Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте f в , а на частоте f T - 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.

6.3. Инвертирующий усилитель

Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.


Рисунок 6.7. Инвертирующий усилитель на ОУ


Резистор R 1 представляет собой внутреннее сопротивление источника сигнала E г , посредством R ос ОУ охвачен ∥ООСН.

При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор R 2 , то потенциал в точке a тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: I г =I ос , т.е. E г /R 1 =–U вых /R ос . Отсюда получаем:

K U инв = U вых /E г = –R ос /R 1 ,

т.е. при идеальном ОУ K U инв определяется отношением величин внешних резисторов и не зависит от самого ОУ.

Для реального ОУ необходимо учитывать его входной ток I вх , т.е. I г =I ос +I вх или (E г U вх )/R 1 =(U вх U вых )/R ос +U вх /U вхОУ , где U вх - напряжение сигнала на инвертирующем входе ОУ, т.е. в точке a . Тогда для реального ОУ получаем:

Нетрудно показать, что при глубине ООС более 10, т.е. K u ОУ /K U инв =F >10, погрешность расчета K U инв для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина R ос превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного R ос (рисунок 6.7б) . В этом случае можно записать:

На практике часто полагают, что R ос 1 =R ос 2 >>R ос 3 , а величина R 1 обычно задана, поэтому R ос 3 определяется достаточно просто.

Входное сопротивление инвертирующего усилителя на ОУ R вх инв имеет относительно небольшое значение, определяемое параллельной ООС:

R вх инв = R 1 +(R ос /K u ОУ + 1)∥R вхОУ R 1 ,

т.е. при больших K u ОУ входное сопротивление определяется величиной R 1 .

Выходное сопротивление инвертирующего усилителя R вых инв в реальном ОУ отлично от нуля и определяется как величиной R вых ОУ , так и глубиной ООС F. При F>10 можно записать:

R вых инв = R вых ОУ /F = R вых ОУ /K U инв /K u ОУ .

С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

f вОС = f T /K U инв .

В пределе можно получить K U инв =1, т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

R вых пов = R вых ОУ /K u ОУ .

В усилителе на реальном ОУ на выходе усилителя при U вх =0 всегда будет присутствовать напряжение ошибки U ош , порождаемое U см и ΔI вх . С целью снижения U ош стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять R 2 =R 1 ∥R ос (см. рисунок 6.7а). При выполнении этого условия для K U инв >10 можно записать:

U ош U см K U инв + ΔI вх R ос .

Уменьшение U ош возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.

На основе рассмотренного инвертирующего УПТ возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

6.4. Неинвертирующий усилитель

Упрощенная принципиальная схема неинвертирующего усилителя на ОУ приведена на рисунке 6.8.

Рисунок 6.8. Неинвертирующий усилитель на ОУ


Нетрудно показать, что в неинвертирующем усилителе ОУ охвачен ПООСН. Поскольку U вх и U ос подаются на разные входы, то для идеального ОУ можно записать:

U вх = U вых R 1 /(R 1 + R ос ),

откуда коэффициент усиления по напряжению неинвертирующего усилителя:

K U неинв = 1 + R ос /R 1 ,

K U неинв = 1 + |K U инв |.

Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.

Входное сопротивление неинвертирующего усилителя R вх неинв велико и определяется глубокой последовательной ООС и высоким значением R вхОУ :

R вх неинв = R вхОУ ·F = R вхОУ ·K U ОУ /K U неинв .

Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:

R вых неинв = R выхОУ /F = R выхОУ /K U неинв /K U ОУ .

Расширение полосы рабочих частот в неинвертирующем усилителе достигается также, как и в инвертирующем, т.е.


f вОС = f T /K U неинв .

Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:

R г = R 1 ∥R ос .

Неинвертирующий усилитель часто используют при больших R г (что возможно за счет большого R вх неинв ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.

Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ ⇒ выход ОУ ⇒ R ос ⇒ инвертирующий вход ОУ) приводит к увеличению U ош , что является недостатком рассматриваемого усилителя.

При увеличении глубины ООС возможно достижение K U неинв =1, т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 6.9.

Рисунок 6.9. Неинвертирующий повторитель на ОУ


Здесь достигнута 100% ПООСН, поэтому данный повторитель имеет максимально большое входное и минимальное выходное сопротивления и используется, как и любой повторитель, в качестве согласующего каскада. Для неинвертирующего повторителя можно записать:

U ош U см + I вх ср R г I вх ср R г ,

т.е. напряжение ошибки может достигать довольно большой величины.

На основе рассмотренного неинвертирующего УПТ также возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

Помимо инвертирующего и неинвертирующего усилителей на основе ОУ выполняются различные варианты УУ, некоторые из них будут рассмотрены ниже.

6.5. Разновидности УУ на ОУ

разностный (дифференциальный) усилитель , схема которого приведена на рисунке 6.10.

Рисунок 6.10. Разностный усилитель на ОУ


Разностный усилитель на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов усилителя. Для U вых разностного усилителя можно записать:

U вых = K U инв U вх 1 + K U неинв U вх 2 R 3 /(R 2 + R 3).

Как правило, R 1 =R 2 и R 3 =R ос , следовательно, R 3 /R 2 =R ос /R 1 =m . Раскрыв значения коэффициентов усиления, получим:

U вых = m (U вх 2 – U вх 1),

Для частного случая при R 2 =R 3 получим:

U вых = U вх 2 – U вх 1 .

Последнее выражение четко разъясняет происхождение названия и назначение рассматриваемого усилителя.

В разностном усилителе на ОУ при одинаковой полярности входных напряжений имеет место синфазный сигнал, который увеличивает ошибку усилителя. Поэтому в разностном усилителе желательно использовать ОУ с большим КОСС. К недостаткам рассмотренного разностного усилителя можно отнести разную величину входных сопротивлений и трудность в регулировании коэффициента усиления. Эти трудности устраняются в устройствах на нескольких ОУ, например, в разностном усилителе на двух повторителях (рисунок 6.11).

Рисунок 6.11. Разностный усилитель на повторителях


Данная схема симметрична и характеризуется одинаковыми входными сопротивлениями и малым напряжением ошибки, но работает только на симметричную нагрузку.

На основе ОУ может быть выполнен логарифмический усилитель , принципиальная схема которого приведена на рисунке 6.12.

Рисунок 6.12 Логарифмический усилитель на ОУ


P-n переход диода VD смещен в прямом направлении. Полагая ОУ идеальным, можно приравнять токи I 1 и I 2 . Используя выражение для ВАХ p-n перехода {I =I 0 ·}, нетрудно записать:

U вх /R = I 0 ·,

откуда после преобразований получим:

U вых = φ T ·ln(U вх /I 0 R ) = φ T (lnU вх – lnI 0 R ),

из чего следует, что выходное напряжение пропорционально логарифму входного, а член lnI 0 R представляет собой ошибку логарифмирования. Следует заметить, что в данном выражении используются напряжения, нормированные относительно одного вольта.

При замене местами диода VD и резистора R получается антилогарифмический усилитель .

Широкое распространение получили инвертирующие и неинвертирующие сумматоры на ОУ, называемые еще суммирующими усилителями или аналоговыми сумматорами. На рисунке 6.13 приведена принципиальная схема инвертирующего сумматора с тремя входами. Это устройство является разновидностью инвертирующего усилителя, многие свойства которого проявляются и в инвертирующем сумматоре.

Рисунок 6.13. Инвертирующий сумматор на ОУ


U вх 1 /R 1 + U вх 2 /R 2 + U вх 3 /R 3 = –U вых /R ос ,

Из полученного выражения следует, что выходное напряжение устройства представляет собой сумму входных напряжений, умноженную на коэффициент усиления K U инв . При R ос =R 1 =R 2 =R 3 K U инв =1 и U вых =U вх 1 +U вх 2 +U вх 3 .

При выполнении условия R 4 =R ос R 1 ∥R 2 ∥R 3 токовая ошибка мала, и ее можно рассчитать по формуле U ош =U см (K U ош +1), где K U ош =R ос /(R 1 ∥R 2 ∥R 3) - коэффициент усиления сигнала ошибки, который имеет большее значение, чем K U инв .

Неинвертирующий сумматор реализуется также как и инвертирующий сумматор, но для него следует использовать неинвертирующий вход ОУ по аналогии с неинвертирующим усилителем.

При замене резистора R ос конденсатором C (рисунок 6.14) получаем устройство, называемое аналоговым интегратором или просто интегратором.

Рисунок 6.14. Аналоговый интегратор на ОУ


При идеальном ОУ можно приравнять токи I 1 и I 2 , откуда следует:

Точность интегрирования тем выше, тем больше K u ОУ .

Кроме рассмотренных УУ, ОУ находят применение в целом ряде устройств непрерывного действия, которые будут рассмотрены ниже.

6.6. Коррекция частотных характеристик

Под коррекцией частотных характеристик будем понимать изменение ЛАЧХ и ЛФЧХ для получения от устройств на ОУ необходимых свойств и, прежде всего, обеспечение устойчивой работы. ОУ обычно используется с цепями ООС, однако при некоторых условиях, из-за дополнительных фазовых сдвигов частотных составляющих сигнала, ООС может превратится в ПОС и усилитель потеряет устойчивость. Поскольку ООС очень глубокая (βK U >>1), то особенно важно обеспечить фазовый сдвиг между входным и выходным сигналом, гарантирующий отсутствие возбуждения.

Ранее на рисунке 6.6 были приведены ЛАЧХ и ЛФЧХ для скорректированного ОУ, по форме эквивалентные ЛАЧХ и ЛФЧХ одиночного усилительного каскада, из которых видно, что максимальный фазовый сдвиг φ<90° при K u ОУ >1, а скорость спада коэффициента усиления в области ВЧ составляет 20дБ/дек. Такой усилитель устойчив при любой глубине ООС.

Если ОУ состоит из нескольких каскадов (например, трех), каждый из которых имеет скорость спада 20дБ/дек и не содержит цепей коррекции, то его ЛАЧХ и ЛФЧХ имеют более сложную форму (рисунок 6.15) и содержит область неустойчивых колебаний.


Рисунок 6.15. ЛАЧХ и ЛФЧХ нескорректированного ОУ


Для обеспечения устойчивой работы устройств на ОУ используются внутренние и внешние цепи коррекции, с помощью которых добиваются общего фазового сдвига при разомкнутой цепи ООС менее 135° на максимальной рабочей частоте. При этом автоматически получается, что спад K u ОУ составляет порядка 20дБ/дек.

В качестве критерия устойчивости устройств на ОУ удобно использовать критерий Боде , формулируемый следующим образом: "Усилитель с цепью обратной связи устойчив, если прямая его коэффициента усиления в децибелах пересекает ЛАЧХ на участке со спадом 20дБ/дек". Таким образом, можно заключить, что цепи частотной коррекции в ОУ должны обеспечивать скорость спада K U инв (K U неинв ) на ВЧ порядка 20дБ/дек.

Цепи частотной коррекции могут быть как встроенные в полупроводниковый кристалл, так и созданными внешними элементами. Простейшая цепь частотной коррекции осуществляется с помощью подключения к выходу ОУ конденсатора C кор достаточно большого номинала. Необходимо, чтобы постоянная времени τ кор =R вых C кор была больше, чем 1/2πf в . При этом сигналы высоких частот на выходе ОУ будут шунтироваться C кор и полоса рабочих частот сузится, большей часть весьма значительно, что является существенным недостатком данного вида коррекции. Полученная в этом случае ЛАЧХ показана на рисунке 6.16.

Рисунок 6.16. Частотная коррекция внешним конденсатором


Спад K u ОУ здесь не будет превышать 20дБ/дек, а сам ОУ будет устойчив при введении ООС, поскольку φ никогда не превысит 135°.

Более совершенны корректирующие цепи интегрирующего (запаздывающая коррекция) и дифференцирующего (опережающая коррекция) типов. В общем виде коррекция интегрирующего типа проявляется аналогично действию корректирующей (нагрузочной) емкости. Корректирующая RC цепь включается между каскадами ОУ (рисунок 6.17).


Рисунок 6.17. Частотная коррекция интегрирующего типа


Резистор R 1 является входным сопротивлением каскада ОУ, а сама цепь коррекции содержит R кор и C кор. Постоянная времени этой цепи должна быть больше постоянной времени любого из каскадов ОУ. Поскольку цепь коррекции является простейшей однозвенной RC цепью, то наклон ее ЛАЧХ равен 20дБ/дек, что и гарантирует устойчивую работу усилителя. И в этом случае цепь коррекции сужает полосу рабочих частот усилителя, однако широкая полоса все равно ничего не дает, если усилитель неустойчив.

Устойчивая работа ОУ при относительно широкой полосе обеспечивается коррекцией дифференцирующего типа. Сущность такого способа коррекции ЛАЧХ и ЛФЧХ заключается в том, что ВЧ сигналы проходят внутри ОУ в обход части каскадов (или элементов), обеспечивающих максимальный K u ОУ 0 , ими не усиливаются и не задерживаются по фазе. В результате ВЧ сигналы будут усиливаться меньше, но их малый фазовый сдвиг не приведет к потере устойчивости усилителя. Для реализации коррекции дифференцирующего типа к специальным выводам ОУ подключается корректирующий конденсатор (рисунок 6.18).


Рисунок 6.18. Частотная коррекция дифференцирующего типа


Помимо рассмотренных корректирующих цепей известны и другие (см., например ). При выборе схем коррекции и номиналов их элементов следует обращаться к справочной литературе (например, ).

Диаграмма Боде

Рис.19.1. Эквивалентная схема на ВЧ.

По этой эквивалентной схеме можно выразить амплитудно-частотную характеристику

(19.1)

где: f с частота среза (полюс), равная верхней граничной частоте

f c = 1/2pRC (19.2)

Из выражения (19.1) видно, что частотную характеристику такого каскада можно аппроксимировать двумя асимптотами, рис.19.2:

на нижних частотах, при f<

K(f) =K 0 ;

на высоких частотах, при f >> fc, f/fc>>1, K(f)= К 0 fc/f .

Рис. 19.2. Кусочно-линейная аппроксимация АЧХ (Диаграмма Боде)

Аппроксимированная АЧХ называется диаграммой Боде. В области высоких частот, т.е. f/f c >> 1 , коэффициент усиления обратно пропорционален частоте. При увеличении частоты в 10 раз (декада) он уменьшается в 10 раз, т.е. на 20 дБ/дек.

Поскольку ОУ имеют большой собственный коэффициент усиления К ¢ » 10 5 , то частотная характеристика K(f) строится в двойном логарифмическом масштабе. Переход к логарифмической единице при рассмотрении многокаскадных усилителей упрощает построение общей АЧХ, так как общий коэффициент усиления определяется простым сложением коэффициентов усиления отдельных каскадов. При построении фазовой характеристики используется кусочно-линейная или ступенчетая аппроксимация (рис.19.2.).

Операционный усилитель представляет собой многокаскадный усилитель состоящий из различных по структуре каскадов. Поэтому общую эквивалентную схему ОУ можно представить как эквивалентный генератор, нагруженный на несколько RC-цепей, рис.19.3.

Рис. 19.3. Эквивалентная схема операционного усилителя

Обычно число таких цепей соответствует числу каскадов. Частоты срезов (полюса) для данной эквивалентной схемы определяются:

(19.3)

Аппроксимированная АЧХ ОУ строится сложением коэффициентов усиления отдельных каскадов, рис.19.4.

Пусть f c 1 =10 4 Гц, f c 2 =10 5 Гц, f c 3 =10 6 Гц

При частотах f.

при f с2 суммируется влияние R1C1 и R2C2, спад K(f) – 40 дБ/дек;

Надо отметить, что рабочая область K(f) ОУ простирается до частоты единичного усиления f Т , на которой K(f)=1(К дБ= 0),

Идеальный ОУ будет смоделирован для PSpice как усилитель с высоким входным сопротивлением, нулевым выходным сопротивлением и высоким коэффициентом усиления по напряжению. Типичные значения этих параметров показаны на рис. 5.1, где R i =1 ГОм; А =200000 и v 0 =A (v 2 –v 1). Обратите внимание, что напряжение v 1 относится к инвертирующему входу, a v 2 - к неинвертирующему. Эта модель будет служить для анализа на постоянном токе и при низкой частоте. При необходимости мы будем изменять модель, учитывая другие свойства ОУ.

Рис. 5.1. Идеальный операционный усилитель


Хотя в применении PSpice для анализа простых схем на ОУ нет необходимости, желательно посмотреть, какую информацию дает программа даже в этих ситуациях. Имеются также некоторые ограничения, которые заслуживают нашего внимания.

На рис. 5.2, а показана схема включения ОУ с использованием отрицательной обратной связи по напряжению. Резистор обратной связи R 2 включен между выходом и инвертирующим входом, при этом неинвертирующий вход заземлен. На рис. 5.2, б приведен вариант такой схемы для PSpice.

Рис. 5.2. Усилитель с отрицательной обратной связью по напряжению на базе идеального ОУ: а) схема усилителя; б) модель усилителя для PSpice

Входной файл для анализа схемы:

Проведите анализ и рассмотрите результаты, полученные в выходном файле. Убедитесь, что V(3)/VS=-9,999. Коэффициент усиления очень близок к -10 и может быть приближенно аппроксимирован выражением v 0 /v s =–R 2 /R 1 . Используя метод узловых потенциалов, запишите уравнения, необходимые, чтобы получить значение v 0 /v s . Убедитесь, что результаты зависят от значения А и что аппроксимация верна только тогда, когда А приближается к бесконечному значению.

В результате анализа должно получиться значение входного сопротивления R in =1 кОм. Можете вы это объяснить? Не забудьте, что мы можем считать оба входа ОУ заземленными, и при этом входное сопротивление оказывается равным R 1 .

Неинвертирующий идеальный операционный усилитель

На рис. 5.3 показана другая простая схема на ОУ. В ней напряжение v s подключено к неинвертирующему (+) входу. На рис. 5.4 показана модель и приведены параметры элементов.

Рис. 5.3. Неинвертирующий усилитель на базе идеального ОУ


Рис. 5.4. Модель неинвертирующего усилителя на базе идеального ОУ


Входной файл для этого случая:

Ideal Operational Amplifier, Noninverting

Убедитесь, что V(3)/VS=10 в соответствии с формулой v 0 /v s =-R 2 /R 1 и R in =2,0Е13. Почему настолько велико входное сопротивление? Так как идеальный ОУ почти не потребляет тока, источник сигнала v s работает практически в режиме холостого хода.

Операционный усилитель с дифференциальным входом

Если входной сигнал подается между инвертирующим и неинвертирующим входами, на выходе ОУ получается усиленная разность входных напряжений. Чтобы упростить анализ, примем, что на рис. 5.5 R i =R 3 =5 кОм и R 2 =R 4 =10 кОм. Модель PSpice для идеального ОУ с внешними элементами приведена на рис. 5.6. Входной файл имеет вид:

Рис. 5.5. Усилитель с дифференциальным входом на базе идеального ОУ


Рис. 5.6. Модель усилителя с дифференциальным входом на базе идеального ОУ


Анализ показывает, что выходное напряжение V(5)=14 В. Используя метод узловых потенциалов для анализа идеального ОУ, убедитесь, что

согласуется с нашими результатами. Вычисления, проведенные вручную, помогут лучше понять работу схемы. Начните с определения напряжения на неинвертирующем входе ОУ. Его легко определить, если вы вспомните, что входы ОУ не потребляют тока. Напряжение v b подается на делитель напряжения и на его выходе получается напряжение v + =6,667 В, это означает, что также составляет 6,667 В (фактически PSpice дает 6,666 В). При использовании этого напряжения вы можете легко найти токи через R 1 и R 2 . Выходной файл показан на рис. 5.7.

**** 07/02/99 16:11:55 ******** Evaluation PSpice (Nov 1998) *********
Op Amp Giving Voltage Difference Output
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 3.0000 (2) 6.6666 (3) 6.6667 (4) 10.0000
TOTAL POWER DISSIPATION 4.47E-03 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
**** SMALL-SIGNAL CHARACTERISTICS
INPUT RESISTANCE AT VB = 1.500E+04
OUTPUT RESISTANCE AT V(5) = 0.000E+00

Рис. 5.7. Выходной файл с результатами анализа схемы на рис. 5.6


Не забывайте, что PSpice не должен использоваться просто для получения численного результата. Надеемся, что после решения у вас возникнет много вопросов, анализ которых поможет вам больше узнать о работе исследуемых устройств.

Амплитудно-частотная характеристика операционного усилителя

При получении частотных характеристик ОУ следует использовать модель, учитывающую изменение его параметров при увеличении частоты. Для ОУ с типовыми характеристиками мы предлагаем модель, представленную на рис. 5.8. Исследуем модель, которая включает R in =1 Мом; R 0 =50 Ом; R i1 =1 кОм; С= 15,92 мкФ и EG с коэффициентом усиления по напряжению A 0 =100000. Последний параметр представляет собой низкочастотный коэффициент усиления или коэффициент усиления по постоянному току при разомкнутой обратной связи. При использовании этих значений, получим выходное напряжение на частоте f c = 10 Гц, при которой выходное напряжение снижается на 3 дБ.

Рис. 5.8. Модель ОУ при частоте 10 Гц


Чтобы проверить расчет, нам необходимо получить коэффициент усиления при разомкнутой обратной связи. Это означает, что резистор обратной связи R 2 должен быть удален из схемы, но так как узел 5 должен иметь два элемента, связанных с ним, включим между узлом 5 и «землей» типовой резистор нагрузки R L =22 кОм (см. рис. 5.9):

Op Amp Model with 3-Frequency at 10 Hz for Open-Loop Gain

Рис. 5.9. Использование модели на рис. 5.8 для получения АЧХ усилителя с обратной связью


Выполните моделирование и получите в Probe график частотной характеристики выходного напряжения V(5), показанный на рис. 5.10. Как и было предсказано, выходное напряжение падает от v 0 =100 В при f =1 Гц до v 0 =70 В при f =10 Гц, частоте, при которой коэффициент усиления падает на 3 дБ. Она представляется символом f c . Выходное напряжение около 100 В соответствует коэффициенту усиления при разомкнутой обратной связи A 0 =100000.

Рис. 5.10. АЧХ усилителя без обратной связи


Рис. 5.11. Характеристика Боде для схемы на рис. 5.9


Для анализа другой особенности модели ОУ, удалите график V(5) и постройте график зависимости

20·lg(V(5)/V(2)).

Из этого графика (рис. 5.11) ясно видно, что спад частотной характеристики составляет 20 дБ/дек. Возвратитесь входному файлу и добавьте следующую строку для введения в схему резистора R 2:

При этом получается практическая схема с выходным напряжением, ограниченным приемлемым значением. В Probe получается график v 0 со среднечастотным значением, близким к 25 мВ. Получите график Боде для отношения выходного напряжения к входному, как вы уже делали для схемы без обратной связи. Результаты показаны на рис. 5.12.

Рис. 5.12. График Боде для усилителя с обратной связью

Убедитесь, что коэффициент усиления на средних частотах равен А mid =27,96 дБ и снижается на 3 дБ при f =39,3 кГц. Чтобы проверить правильность этих значений, вспомните, что коэффициент усиления равен единице при частоте f t =A 0 ·f c . В модели задано типичное значение частоты f t = 1 МГц. При этом также принимается, что f с =10 Гц, что дает A 0 =1Е5. Значение f c установлено при R i1 =1 кОм и С= 15,92 мкФ.

Обратите внимание, что ширина полосы частот при замкнутой обратной связи CLBW=f t β, а

В нашем примере β=10/250=0,04 и f t β=40 кГц. Это приближенное значение находится в хорошем согласии с нашей моделью, которая дала f =39,33 кГц для частоты, при которой происходит снижение на 3 дБ. В качестве дальнейшего исследования модели измените значение резистора обратной связи на R 2 =15 кОм, и снова проведите анализ. Убедитесь, что значение А mid =7,959 дБ и f 3дБ =393,6 кГц. А какое значение для f 3дБ даст использование приближенной формулы и нового значения β?

Использование подсхем при моделировании операционных усилителей

Модель, которую мы использовали для ОУ в предыдущем примере, содержит достаточно много элементов, поэтому целесообразно оформить ее в виде подсхемы (subcircuit). При этом мы одновременно познакомимся с этим инструментом PSpice. Модель показана на рис. 5.13.

Рис. 5.13. Подсхема ОУ с обозначением узлов


Отметим, что узлы и элементы маркированы с использованием символов нижнего регистра. Это условие не обязательно, так как PSpice не учитывает регистра. То есть верхний и нижний регистры могут взаимозаменяться. Однако чтобы проще было идентифицировать подсхему и ее элементы, мы выбрали для меток узлов нижний регистр. Мы назначили номера и символы таким образом, чтобы не путать внутренние узлы подсхемы с внешними. Подсхема задается как независимая часть входного файла, но не является законченным входным файлом сама по себе. Команды описания подсхемы будут следующими:

Описание любой подсхемы начинается с команды .subckt. Первым элементом списка является имя подсхемы, которое в данном случае записано как opamp. Оно сопровождается набором узлов, которые связывают подсхему с остальной частью входного файла. Вы можете думать о них как об узлах, доступных для внешней части схемы. В данном примере - это узлы т, р и v 0 . Опорный узел всегда обозначается как 0, и его не обязательно включать в перечень узлов.

Элементы в подсхеме задаются обычным способом. Так как подсхема не является законченным входным файлом, она может содержать «висящие» узлы. Команды ввода элементов выровнены для упрощения их идентификации, но это не обязательно. Команда .ends отмечает конец описания подсхемы.

Теперь мы готовы рассмотреть новую версию анализа ОУ с использованием подсхемы. Законченная схема показана на рис. 5.9 и повторена на рис. 5.14. После приобретения некоторого опыта вы, возможно, захотите рисовать подсхему в виде прямоугольника или треугольника. Как видно из рисунка, узлы m, р и v 0 имеют новые обозначения. Они получили метки 1, 2 и 3 соответственно. Чтобы использовать подсхему, основной входной файл должен содержать команду ввода подсхемы:

Рис. 5.14. Модель, показывающая подсхему в составе общей схемы для вызова


Здесь X обозначает обращение к подсхеме. Узлы 1, 2 и 3 приводятся в порядке, соответствующем узлам m , p и v 0 в подсхеме. Это позволяет подсхеме получать обозначение узла, передаваемое от основного схемного файла. Инструкция также содержит имя подсхемы opamp. Теперь рассмотрим весь входной файл:

Op Amp Analysis Using Subcircuit

Выполните анализ и убедитесь, что он дает тот же результат, что и предыдущий анализ, в котором подсхема не использовалась.

Дифференцирующие схемы на базе операционного усилителя

Дифференцирующая схема, построенная на базе идеального ОУ, показана на рис. 5.15, а. Поскольку инвертирующий вход заземлен, v c =v . Легко показать, что при R =0,5 Ом

Таким образом, когда входное напряжение имеет форму треугольника, выходное напряжение должно быть прямоугольным (рис. 5.15, б). Используйте приведенный ниже входной файл, чтобы проверить этот вывод:

Differentiator Circuit v 1 0 PWL (0, 0 1s ,1V 2s,0)

Рис. 5.15. Схема дифференциатора на базе ОУ


Выполните анализ и убедитесь, что выходное напряжение имеет прямоугольную форму с чередующейся полярностью и значениями напряжения от -1,0 В до +1 В. Эта инверсия происходит также и в ОУ. Постройте на одном графике временные зависимости для v(3) и v(1). Сравните ваши результаты с рис. 5.16. Обратите внимание, что команда входного файла для введения С не должна быть задана как

Рис. 5.16. График входного и выходного напряжений в схеме на рис. 5.15


В этом случае символ F будет восприниматься программой не как фарада, а как префикс и команда будет задавать значение 2 fF (фемтофарады). Если вы хотите, чтобы в записи всегда отражались единицы измерения, то вы можете использовать альтернативную форму записи:

Интегрирующие схемы ha базе операционных усилителей

Устройства, дуальные дифференцирующим схемам, называются интегрирующими схемами. На рис. 5.17, а резистор R и конденсатор С поменялись местами относительно рис. 5.15, а. Новая схема и есть интегратор (инвертирующий). Чтобы проверить его свойства, используйте входное напряжение (форма которого показана на рис. 5.17, б) и входной файл:

v 1 0 PWL (0 0 0.01ms, -1V 1s, -1V 1000.01ms, 0V 2s,0V 2000.01ms, 1V

Рис. 5.17. Схема интегратора на базе ОУ


Обратите внимание, что «+» на строке 3 файла схемы указывает на продолжение команды, обычно длинной, которую необходимо перенести на следующую строку для удобства чтения.

Выполните анализ и получите график v(1) вместе с графиком v(3). Убедитесь, что выходное напряжение начинается в момент фронта входного сигнала, линейно изменяется до максимального напряжения в 1 В, затем линейно спадает, достигая нуля между 2-й и 3-й с. Сравните ваши результаты с рис. 5.18.

Рис. 5.18. График входного и выходного напряжений в схеме на рис. 5.17


В качестве дополнительного упражнения, используйте входное напряжение такой же формы, как в задаче, посвященной дифференциатору, и найдите вид выходного напряжения. Проверьте, что этот график имеет форму параболы с установившимся значением -1 В, приведенную на рис. 5.19.

Рис. 5.19. График входного и выходного напряжений в схеме на рис. 5.17 при треугольной форме входного воздействия

Отклик на единичную функцию

Единичная ступенчатая функция показана на рис. 5.20, б. По определению она остается нулевой до t =0, а начиная с этого момента становится равной 1 В. Параметры элементов для схемы, показанной на рис. 5.20, a: R= 2 Ом, R 1 =1 Ом и С =0,125 Ф. Анализ схемы показывает, что

v 0 (t ) = (3 – 2e -4t)u (t ).

Рис. 5.20. Исследование реакции схемы с одним накопителем на ступенчатое воздействие: а) схема; б) временная зависимость входного воздействия


Перед началом анализа на PSpice полезно нарисовать график этой временной зависимости, чтобы представлять себе форму искомого напряжения. Входной файл:

Response to Unit Step Function
vs i 0 PWL (0,0 1us ,1V 5s, 1V)

После запуска анализа в программе Probe используем курсор, чтобы убедиться, что при t =0,5 с, V 0 =2,73 В. Это соответствует значению, вычисленному из приведенного выше уравнения. Результаты анализа приведены на рис. 5.21.

Рис. 5.21. Результат анализа схемы на рис. 5.20, а

Цепи c двумя однотипными операционными усилителями

Когда в схеме имеется несколько однотипных устройств, намного проще работать, представив их в виде подсхем. Предположим, что мы собираемся сравнить частотные характеристики для двух ОУ, схемы которых мы предварительно рассмотрели (в разделе «Амплитудно-частотные характеристики операционного усилителя»). Вспомним, что схемы были подобны за исключением того, что в первом случае R 2 =240 Ом, а во втором случае R 2 =15 Ом. Их частотные характеристики удобнее сравнивать на общем графике.

Чтобы добиться этого, схему просто расширяют так, чтобы оба случая были исследованы одновременно. Мы определим ОУ подсхемой и используем рис. 5.22, чтобы обеспечить простую идентификацию узлов. Усилители Ор1 и Ор2 показаны просто в виде треугольников, поскольку вы уже знакомы с их моделью, нет необходимости повторять внутренние подробности. Теперь легко получить входной файл:

Double Op Amp Circuit for Gain-Bandwidth Analysis

Рис. 5.22. Схема с двумя ОУ


Подсхема описывается так же, как и прежде. После создания подсхемы вы можете просто скопировать ее в любой входной файл, где она необходима. В данном случае она вызывается дважды - сначала командой X1 , а затем командой X2. Список узлов, используемых в каждом случае, такой же, как на рис. 5.22.

Выполните анализ и затем получите графики

20·lg(V(3)/V(2)),

20·lg(V(6)/V(5)).

Используйте режим курсора, чтобы найти отметку 3 дБ для первого графика. Обратите внимание, что при включении режима курсора автоматически выбирается первый график. Убедитесь, что А mid =27,96 дБ и f 3дБ =39,4 кГц.

Исследуйте теперь второй график. Нажмите Ctrl и → (стрелку вправо), чтобы перевести курсор на второй график. Затем двигайтесь по второму графику, пока не достигнете нужной точки. Обратите внимание, что второй график показывает А mid =7,96 дБ, что на 20 дБ меньше, чем у первого. Искомая частота будет соответствовать коэффициенту усиления 4,96 дБ (7,96–3,00). Убедитесь, что это дает f 3дБ =394 кГц. Эти результаты соответствуют полученным в предыдущих примерах. Сравните полученный вами двойной график с рис. 5.23.

Рис. 5.23. Результат анализа схемы с двумя ОУ

Активные фильтры

Для получения более крутых границ полосы пропускания, чем у простых однополюсных фильтров, содержащих, например, только один конденсатор, могут применяться высокочастотные, низкочастотные и полосовые активные фильтры. Классическим примером таких устройств являются фильтры Баттерворта.

ОУ часто используются при разработке активных фильтров, поскольку получить усилители с высокими добротностями на базе ОУ достаточно просто. Мы не будем касаться теории фильтров в нашем обсуждении. Если вы изучаете активные фильтры впервые, обратитесь к другим источникам, чтобы лучше оценить элегантность и простоту этих схем.

Низкочастотный фильтр Баттерворта второго порядка

Воспользуемся таблицами нормированных многочленов Баттерворта, чтобы найти коэффициенты для фильтра второго порядка:

s ² + 1,414s + 1.

Фильтр второго порядка показан на рис. 5.24. Для вводного примера найдем элементы R 1 , R 2 , R и С для фильтра Баттерворта с частотой среза f c = 5 кГц. Как обычно, в качестве частоты среза принимается частота, при которой характеристика снижается на 3 дБ. Согласно теории, низкочастотный коэффициент усиления задается выражением:

A vo = 3 – 2k,

где k представляет собой коэффициент затухания, определенный как половина коэффициента при s ² из таблицы полиномов Баттерворта (см. Hillburn and Johnson. Manual of Active Filter Designs, McGraw-Hill, 1973). Для этого примера k =0,707 и

A v0 = 3 - 1,414 = 1,586.

Рис. 5.24. Низкочастотный фильтр Баттерворта второго порядка


Допустим, что R 1 =10 кОм. Из выражения

получаем R 2 =5,86 кОм. Если положить R= 1 кОм, из выражения f c =1/(2πRC ) найдем С =31,83 нФ. Чтобы проверить теорию Баттерворта, используем идеальную модель ОУ в качестве подсхемы, как показано на рис. 5.25. Для этого создайте следующий входной файл:

Second-Order Butterworth Filter

Рис. 5.25. Подсхема для идеального ОУ


Проведите анализ и получите график V(5)V(1). Выясните, что А v0 =1,586, что соответствует нашему расчету. Затем удалите этот график и получите график зависимости

20·lg(V(5)/(V(1)·1,587В)).

Убедитесь, что f c =5 кГц. Этот фильтр второго порядка должен иметь вдвое большую крутизну спада, чем фильтр первого порядка. Вспомним, что фильтр первого порядка имеет скорость спада 20 дБ/дек. Убедитесь, что при f =10 кГц A v =12,31 дБ, а при f =100 кГц A v =52,05 дБ, что составляет приблизительно 40 дБ/дек. Этот график показан на рис. 5.26.

Рис. 5.26. График Боде для низкочастотного фильтра Баттерворта второго порядка

Низкочастотный фильтр Баттерворта четвертого порядка

В качестве другого примера рассмотрим фильтр Баттерворта четвертого порядка, предназначенный для работы на частоте f c =1 кГц. Из таблицы полиномов находим коэффициенты:

(s ² + 0,765s + 1)·(s ² + 1,848s + 1).

Коэффициент затухания k равен половине коэффициента при s в каждом квадратном уравнении, давая k 1 =0,383 и k 2 =0,924:

A v1 = 3 – 2k 1 = 3 – 0,765 = 2,235 и A v2 = 3 – 2k 2 = 1,152.

Для первого каскада примем R 1 =10 кОм и с помощью уравнения

найдем R 2 =12,35 кОм. Приняв для второго каскада R 1 =10 кОм, получим R 2 =1,52 кОм. При f c =1 кГц, если положить R =1 кОм, С =0,16 мкФ. Схема показана на рис. 5.27. Поскольку каждый элемент должен иметь уникальное обозначение, вычисленные здесь значения R и С относятся к соответствующим резисторам и конденсаторам каждого из каскадов. Входной файл при этом:

Fourth-Order Butterworth Filter

Рис. 5.27. Полосовой фильтр Баттерворта четвертого порядка


Выполните анализ и затем получите совместный график для V(5)/V(1), (V)9/V(5), и V(9)/V(1). Они представляют собой коэффициенты усиления первого и второго каскадов и полный коэффициент усиления соответственно. Так как они выражены не в децибелах, вы легко сможете проверить, что A v1 =2,235, A v2 = 1,152, а общий коэффициент усиления A v =A v1 ·A v2 = 2,575. Вы можете найти эти значения, используя режим курсора при низких частотах. Нажимайте Ctrl и →, чтобы выбрать нужный график. Сравните полученные вами графики с представленными на рис. 5.28.

Рис. 5.28. АЧХ фильтра Баттерворта четвертого порядка


Получите распечатку результатов анализа, включая все три графика для дальнейшего изучения. Обратите внимание на интересный пик на графике A v1 . Он компенсируется провалом на графике А v2 , поэтому график полного коэффициента усиления становится плоским почти на всей полосе пропускания, круто падая при частоте, близкой к 1 кГц.

Крутизну легче определить из графика в децибелах. Используйте характеристику 20·lg(V(9)/V(1)) и так далее, заменив три графика логарифмическими характеристиками. Убедитесь, что для полной схемы, f c =1 кГц. Также пронаблюдайте скорость спада для каждого из трех графиков. Вы сможете показать, что для каждого из двух каскадов, крутизна спада составляет приблизительно 10 дБ/дек по сравнению с приблизительно с 20 дБ/дек для общей характеристики. Разве не вызывает восхищения простота восприятия основных идей при передаче их графическим способом. Вы должны также оценить, сколько времени и усилий сэкономлено при использовании такого мощного вычислительного инструмента, как PSpice. Сравните кривые представленные на рис. 5.29, с полученными графиками.

Рис. 5.29. Логарифмические АЧХ (ЛАЧХ) фильтра Баттерворта четвертого порядка


Мы можем показать одно дополнительное свойство фильтра Баттерворта, слегка модифицировав предыдущий входной файл. Сравните фильтры второго и четвертого порядков. Будут необходимы некоторые вычисления, поскольку мы не имеем данных для двухкаскадного фильтра при f =1 кГц.

Низкочастотный коэффициент усиления будет таким же, как вычисленный ранее для фильтра второго порядка, а именно: A v =1,586. Положив R 1 =10 кОм, получим R 2 =5,86 кОм.

При R =1 кОм найдем, что С= 0,159 мкФ. Дополнение к схеме на рис. 5.27, позволяющее включить в схему фильтр второго порядка, показано на рис. 5.30. Отметим, что это дополнение имеет номера узлов большие, чем приведенные на рис. 5.27. Этот фильтр имеет собственный вход и физически не связан с четырехкаскадным фильтром. Если дополнить входной файл соответствующей информацией, он примет вид:

Fourth-Order Butterworth Filter Compared with Second-Order

Рис. 5.30. Дополнение к схеме на рис. 5.27, позволяющее включить в схему фильтр второго порядка


Выполните анализ и получите графики в децибелах V(9)/V(1) для фильтра четвертого порядка и V(14)/V(10) для фильтра второго порядка. Вы должны получить A v = 4,006 дБ (второй порядок) и A v =8,214 дБ (четвертый порядок). Мы хотим показать их при сравнимой базе, поэтому построим графики

20·lg(V(14)/V(10)),

20·lg(V(9)/V(1)) – 4,208.

Значение 4,208 представляет смещение второго графика относительно первого, нормализующего второй график относительно первого. Эти графики (рис. 5.31) с накладывающимися в низкочастотном диапазоне траекториями ясно показывают, что оба фильтра Баттерворта имеют одинаковую частоту f c =1 кГц. Это относится к фильтрам Баттерворта всех порядков.

Рис. 5.31. Логарифмических АЧХ для фильтров Баттерворта второго и четвертого порядков

Активный резонансный полосовой фильтр

В простой резонансной схеме резонансные свойства RLC -цепи используются для создания крутого спада характеристики на границах полосы пропускания. На рис. 5.32 показан входной колебательный контур, содержащий V s , R, L и C . Выберем параметры элементов, обеспечивающие необходимую ширину полосы частот В и добротность Q .

Рис. 5.32. Активный резонансный полосовой фильтр с добротностью Q = 2


Центральная частота принимается равной частоте резонанса LС-контура:

Добротность Q определяется по формуле Q =ω 0 L/R. В таком фильтре В =f 0 /Q=R /2πL. Например, выберем добротность Q=2, f 0 =11 кГц и R= 10 кОм. При этом L =0,289 Гн и С =0,724 нФ. В завершение выберем R 1 =10 кОм, чтобы обеспечить необходимое значение A v этого неинвертирующего усилителя. Входной файл:

Active Resonant Band-Pass Filter

Проведите анализ и получите график отношения выходного напряжения к входному (V(5)/V(1)) в логарифмическом масштабе. Проверьте центральную частоту и ширину полосы частот. Значения частот спада на 3 дБ составляют f =8,6 кГц и f =14,1 кГц, что обеспечивает полосу пропускания В =5,5 кГц. При этом центральная частота оказывается равной приблизительно 11,2 кГц.

Получим также график VP(5), чтобы наблюдать, как фазовый угол изменяется вблизи резонансной частоты. Он равен нулю при f =11 кГц. Интересно сравнить две схемы этого типа, которые имеют различные значения добротности. Мы получили результаты при добротности Q =2, а теперь исследуем другую схему при Q =5. На рис. 5.33 показана соответствующая схема. Ширина полосы частот В= 2,2 кГц, и сохраняя значение R =10 кОм, получим L =0,723 Гн и С= 0,289 нФ.

Рис. 5.33. Схема дополнения, позволяющая исследовать полосовой фильтр с добротностью Q = 5


Узлы пронумерованы таким образом, чтобы схемой можно было дополнить первоначальный входной файл. Это позволит нам получить АЧХ для обеих схем на одном графике. Добавьте следующие команды к предыдущему входному файлу:

Выполните анализ и получите в одном окне графики

20·lg(V(5)/V(1)),

20·lg(V(10)/V(6)).

Посмотрите влияние добротности на форму графиков при Q= 5 и Q= 2. С помощью курсора проверьте ширину полосы частот при Q =5. Она должна быть почти точно В =2,2 кГц. Эти кривые показаны на рис. 5.34.

Рис. 5.34. Графики Боде для сравнения АЧХ при добротностях Q = 2 и Q = 5


Получите другой график, используя VP(5) для одной кривой и VP(10) для другой. Это покажет сравнение сдвигов фазы для двух случаев. Сравните результат с полученным на рис. 5.35.

Рис. 5.35. Графики Боде для сравнения фазочастотных характеристик при добротностях Q = 2 и Q = 5

Активный RC полосовой фильтр

Использование катушки индуктивности в полосовом фильтре не всегда желательно, тем более что в некоторых случаях значение индуктивности очень велико. На рис. 5.36 представлена схема, в которой для обеспечения заданной полосы пропускания используются только конденсаторы и резисторы.

Рис. 5.36. Активный полосовой RC-фильтр


Для определения параметров элементов можно использовать следующие формулы:

Для примера мы выберем A 0 =50, f 0 =160 Гц и В= 16 Гц. Для удобства примем С 1 =С 2 =0,1 мкФ. Выражение для добротности Q=f 0 /B. Теперь найдите R 1 , R 2 и R 3 . Сравните ваши ответы с приведенными в последующих результатах анализа на PSpice. Обратите внимание, что значения сопротивления были немного округлены. Входной файл:

Проведите анализ и получите график V(4)/V(1), показывающий А 0 =50 при f 0 =158 Гц. Удалите этот график и постройте новый в логарифмическом масштабе, чтобы найти полосу пропускания. Убедитесь, что f 1 =151 Гц и f 2 =167 Гц, что дает B =16 Гц. На рис. 5.37 показан результат с курсором в одной из точек, соответствующих снижению на 3 дБ.

Рис. 5.37. Характеристика Боде для схемы на рис. 5.36

Обзор новых команд PSpice, применяемых в данной главе

Х []*

Например, запись

указывает, что подсхема подключена в узлах 9, 8 и 10 к основной схеме. Имя подсхемы - iop. Входной файл содержит описание подсхемы. Он мог бы иметь, например, такой вид:

где запись iop идентифицирует подсхему, в которой узлы подсхемы 1, 2 и 3 подключаются к внешним узлам 8, 9 и 10 соответственно команде X . Строка .ends показывает конец описания подсхемы.

Использование подсхем наиболее удобно, когда во входном файле необходимо использовать устройство, модель или группу элементов более одного раза. Например, все команды X1, Х2 и Х3 могли бы обращаться к одному и тому же устройству: iop.

Задачи

5.1. Идеальный инвертирующий ОУ, показанный на рис. 5.2, имеет следующие параметры элементов: R 1 =2 кОм; R 2 =15 кОм; А =100000 и R i =1 Мом. Проведите PSpice анализ, чтобы определить коэффициент усиления по напряжению, входное и выходное сопротивления. Значение 1 МОм для встречается на практике. Какие различия в результатах вы получите, если выполнить анализ на PSpice для R i =1 ГОм?

5.2. Рассчитайте идеальный неинвертирующий ОУ, показанный на рис. 5.3, таким образом, чтобы иметь коэффициент усиления по напряжению, равный 20. Выберите значения для R 1 и R 2 , и выполните PSpice анализ, чтобы проверить ваш расчет.

5.3. Идеальный ОУ, показанный на рис. 5.5, должен использоваться при значениях входных сигналов v a =3 В и v b =10 В. При R 1 =5 кОм, R 2 =10 кОм, R 3 =10 кОм и R 4 =5 кОм, найдите выходное напряжение, используя PSpice. Сравните результаты с теми, что получили в примере из текста при R 1 =R 3 и R 2 =R 4 . Определите роль R 3 и в определении коэффициента усиления по напряжению.

5.4. Для модели ОУ, приведенной на рис. 5.8, f t =1 МГц и f c =10 Гц. Пересмотрите модель, чтобы учесть f t =2 МГц и f c =10 Гц. Используйте R 1 =10 кОм и R 2 = 240 кОм. Найдите коэффициент усиления на средних частотах и верхнее значение частоты для снижения на 3 дБ. Сравните ваши результаты с приведенными в текстовом примере.

5.5. На рис. 5.15 произведение RC составляет 1 с. Покажите, что использование чаще применяемых на практике значений С =50 мкФ и R= 20 кОм в том же входном файле должно привести к тем же результатам, что и в текстовом примере. Затем при использовании С =50 мкФ и R= 10 кОм выполните анализ снова. Объясните различие между этим и предыдущим результатами.

5.6. Используя схему на рис. 5.17 при С =50 мкФ и R =20 кОм, выполните на PSpice анализ с тем же входным сигналом, что и на рисунке. Сравните полученные результаты с рис. 5.18. Затем при использовании С= 50 мкФ и R =10 кОм выполните анализ снова. Объясните различие между этим и предыдущим результатами.

5.7. На рис. 5.38 показан ОУ первого порядка, у которого

v s = 4 – 4u(t) В,

где u(t) представляет собой единичную ступенчатую функцию. Анализ показывает, что

v c (t ) = 10e -4t В и

v 0 (t) = -v c (t ) В.

Рис. 5.38.


Для t ≥0 выполните PSpice анализ, чтобы проверить предсказанные результаты.

5.8. На рис. 5.39 приведена схема с ОУ, для которой

v s (t ) = 3 - 3u (t ) В.

Рис. 5.39


Найдите v 0 (0), i с (0), i 0 (0) и получите график v 0 (t), используя PSpice.

5.9. Рассчитайте фильтр низкой частоты первого порядка, показанный на рис. 5.40, с частотой среза f 0 =5 кГц. Используйте R=R 1 =1 кОм и рассчитайте С . Найдите коэффициент усиления на средних частотах и используйте программу Probe для проверки расчета.

Цель работы

· Ознакомиться с основами функционирования операционных усилителей.

· Изучить свойства операционных усилителей (ОУ) и простейших усилительных схем на основе ОУ.

· Приобрести практические навыки работы с электронными приборами и сборки электрических схем.

Задачи

· Измерить напряжение смещения нуля изучаемого ОУ.

· Измерить и проанализировать амплитудно-частотную характеристику неинвертирующего усилителя при различных значениях коэффициентов усиления усилителя.

· Измерить и проанализировать амплитудную характеристику неинвертирующего усилителя на низких и высоких частотах.

· Изучить амплитудно-частотную характеристику инвертирующего усилителя для различных значений коэффициента усиления.

· Измерить и проанализировать амплитудную характеристику инвертирующего усилителя на низкой и высокой частотах.

· Измерить максимальную скорость нарастания выходного напряжения инвертирующего усилителя на низкой и высокой частотах.

· Измерить частотную характеристику максимальной амплитуды неискаженного выходного сигнала инвертирующего усилителя.

1 Теоретические сведения

1.1 Историческая справка

Операционный усилитель (ОУ) был разработан для выполнения математических операций (сложения, вычитания, дифференцирования , интегрирования, логарифмирования и др.) в аналоговых вычислительных машинах. Первый ламповый ОУ появился в 1942 году (США). Он содержал два двойных электровакуумных триода. Первые ОУ представляли собой громоздкие и дорогие устройства. С заменой ламп транзисторами операционные усилители стали меньше, дешевле, надежнее, и сфера их применения расширилась. Первые операционные усилители на транзисторах появились в продаже в 1959 году. Р. Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров ОУ способствовали развитию интегральных микросхем, которые были изобретены в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУ μА702, имевший рыночный успех, был разработан Р. Уидларом (США) в 1963 году. В настоящее время сфера применения ОУ для выполнения математических операций резко снизилась по сравнению с другими их применениями. Номенклатура ОУ насчитывает сотни наименований. Операционные усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению.


1.2 Общие сведения об операционных усилителях

Операционные усилители представляют собой широкий класс аналоговых микросхем, которые позволяют производить усиление аналоговых сигналов, придавать им различную форму, складывать и вычитать сигналы, производить операции дифференцирования и интегрирования, создавать источники стабильного напряжения и генераторы колебаний различной формы.

Операционный усилитель (ОУ) – это многокаскадный транзисторный усилитель, выполненный в виде микросхемы и имеющий огромный к оэффициент усиления напряжения . Каждый ОУ содержит:

· входной балансный каскад

· каскад дополнительного усиления;

· выходной каскад усиления мощности.

Полная принципиальная схема ОУ содержит многочисленные триодные и диодные цепи и необходимые для работы усилителя резисторы. Они обеспечивают усиление сигнала, температурную стабильность, равенство потенциалов входных клемм ОУ, высокое входное сопротивление, низкое выходное сопротивление, защиту схемы от перегрузок. Входной балансный каскад представляет собою дифференциальный усилитель на биполярных или полевых транзисторах. Дифференциальный усилитель – это усилитель постоянного тока. С целью уменьшения дрейфа нуля он собран по балансной схеме. Оконечным каскадом усилителя мощности, как правило, является истоковый (или эмиттерный) повторитель, что позволяет уменьшить выходное сопротивление ОУ.

Все каскады ОУ связаны между собой гальванически , без применения разделительных конденсаторов. ОУ имеет два входа: инвертирующий (вход «–») и неинвертирующий или прямой (вход «+»). Сигнал, поданный на вход «+», усиливается и на выходе ОУ образуется усиленный сигнал синфазный со входным, т. е. входной и выходной сигналы совпадают по фазе. Если подать сигнал на вход «–», то он не только усиливается, но и изменяется по фазе (инвертируется) на 180o, т. е. входной и выходной сигналы находятся в противофазе. При отсутствии сигналов оба входа и выход ОУ находятся под нулевыми потенциалами.

1.3 Основные характеристики ОУ

Многочисленные типы ОУ, выпускаемые промышленностью, подразделяются на ОУ общего назначения и специализированные ОУ (например, низкошумящие, микромощные, быстродействующие и некоторые другие). Для описания свойств тех и других используются следующие основные характеристики:

· Коэффициент усиления напряжения (КU) – это отношение амплитуды сигнала на выходе к амплитуде сигнала на одном из входов ОУ, когда другой вход соединён с «землёй» (или к разности сигналов на обоих входах ΔUвх, если источник сигнала включён между ними). Типичные значения КU для ОУ без цепей обратной связи находятся в пределах 104- 106.

· Частота единичного усиления. Каждый усилительный каскад ОУ обладает инерционностью, которая приводит к тому, что, начиная с некоторой частоты, усиление каскада уменьшается. Чем больше число каскадов, тем больше общая инерционность ОУ, тем меньше усиление на высоких частотах. На некоторой частоте входного сигнала усиление ОУ снижается до 1. Эта частота называется частотой единичного усиления и обозначается fт. Для низкочастотных ОУ fт=1 МГц, а для быстродействующих высокочастотных - fт=(15-100) МГц, а отдельные ОУ могут работать до 2000 МГц.

· Скорость нарастания напряжения (VU) характеризует время установления выходного сигнала большой амплитуды. Она зависит и от fт и от свойств выходных каскадов ОУ при передаче большого сигнала. Для низкочастотных ОУ VU=0,2 В/мкс, для быстродействующих VU=20 В/мкс и более.


· Входное сопротивление (Rвх) – отношение изменения напряжения на одном из входов ОУ к изменению входного тока. Если внешние обратные связи отсутствуют, то сопротивления Rвх неинвертирующего и инвертирующего входов ОУ одинаковы. Величина сопротивления Rвх зависит от типа транзисторов, применяемых во входном балансном усилителе. Если это биполярные транзисторы, то Rвх составляет (десятки-сотни) кОм, а если во входном каскаде полевые транзисторы, то Rвх – (единицы-тысячи) Мом.

· Выходное сопротивление (Rвых) – отношение изменения напряжения на выходе ОУ к изменению выходного тока. Для большинства типов ОУ (кроме усилителей мощности) Rвых~ (100-200) Ом.

· Коэффициент ослабления синфазного сигнала (Ккосс) – отношение амплитуды выходного сигнала ОУ к амплитуде входного сигнала, поданного одновременно на оба входа. При подаче сигнала на вход «+» на выходе возникает сигнал той же полярности; при подаче сигнала на вход «–» – противоположной полярности. Следовательно, при подаче одинакового сигнала на оба входа выходные сигналы вычитаются. Если бы оба входа были совершенно симметричными, результирующий сигнал на выходе был бы равен нулю. Вследствие некоторой асимметрии выходной сигнал отличается от нуля, но он значительно меньше, чем входной. Коэффициент ослабления сигнала Ккосс для различных типов ОУ составляет 80-100 дБ.

Существуют и некоторые другие, менее существенные характеристики ОУ, такие как напряжение смещения нуля, входной ток и т. д.

1.4. Идеализация характеристик ОУ

Для упрощения различных расчётов используют понятие идеальный ОУ. Идеальный ОУ имеет следующие основные характеристики:

· Коэффициент усиления напряжения очень велик (КU→ ∞).

· Частота единичного усиления очень велика (fт→ ∞).

· Входное сопротивление ОУ очень велико (Rвх→ ∞).

· Выходное сопротивление очень мало (Rвых→ 0).

· Напряжение смещения очень мало (Uсм → 0).

· Скорость нарастания выходного сигнала очень велика (VU→ ∞).

· Коэффициент ослабления синфазного сигнала очень велик (Ккосс→ ∞).

В реальных ОУ такие характеристики недостижимы. Однако в большинстве применений стараются так подобрать тип ОУ и характеристики связанного с ним устройства, чтобы ОУ выступал по отношению к этому устройству, как идеальный. Так, например, импеданс цепи обратной связи ОУ выбирают значительно большим, чем Rвых, и значительно меньшим, чем Rвх, что позволяет в расчётах этими величинами пренебречь.

1.5 Свойства операционного усилителя

На рисунке 1 дано схемное обозначение операционного усилителя. Входной каскад его выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа: неинвертирующий U+ и инвертирующий U–. . В области низких частот выходное напряжение Uвых находится в той же фазе, что и разность входных напряжений Uд = U+ – U– , где Uд – разностное входное напряжение или напряжение дифференциального сигнала.

Рисунок 1 – Схемное обозначение операционного усилителя

Помимо схемного обозначения ОУ показанного на рисунке 1, в литературе можно встретить и другие обозначения ОУ (рисунок 2): Всюду на рисунке 2: Uвх1 – инвертирующий вход, Uвх2 – неинвертирующий вход. В ОУ, обозначенном на рисунке 2 под номером 3, выводы 4 и 7 предназначены для подключения напряжения питания микросхемы, а выводы обозначенные NC – для подключения подстроечного резистора, с помощью которого можно уменьшать величину напряжения смещения нуля.

Чтобы обеспечить возможность работы операционного усилителя с сигналами как с положительной, так и с отрицательной полярностями, следует использовать двухполярное питающее устройство. Для этого необходимо предусмотреть два источника постоянного напряжения, которые, как это показано на рисунке 1, подключаются к соответствующим внешним клеммам операционного усилителя.

Рисунок 2 – Альтернативные обозначения операционных усилителей

Как правило, стандартные операционные усилители в интегральном исполнении работают с напряжениями питания (плюс 15 – минус 15) В. Однако есть ОУ работающие совсем с низкими напряжениями питании и усилители с однополярным напряжением питания. На принципиальных схемах ОУ обычно изображают только их входные и выходные клеммы.

В действительности идеальных операционных усилителей не существует. Для того чтобы можно было оценить, насколько тот или иной операционный усилитель близок к идеалу, приводятся технические характеристики усилителей. Рассмотрим некоторые из них более подробно.

· Дифференциальный коэффициент усиления операционного усилителя К0=DUвых / DUвх или К0=DUвых / D (U+ – U–) или К0= DUвых / DUд - называется собственным коэффициентом усиления операционного усилителя, т. е. коэффициентом усиления ОУ при отсутствии обратной связи. Откуда следует, что DUвых = К0۰DUд, т. е., приращение выходного напряжения должно быть прямо пропорционально приращению дифференциального входного напряжения. На рисунке 3 показана типичная зависимость выходного напряжения от дифференциального входного напряжения реального усилителя – амплитудная характеристика ОУ.

Рисунок. 3 –Амплитудная характеристика неинвертирующего ОУ

Видно, что зависимость Uвых = f (Uд) линейна только в диапазоне напряжений Uвых min < Uвых < Uвых max. Этот диапазон напряжения называется областью усиления. В области насыщения с ростом Uд соответствующего увеличения Uвых не происходит. Границы области усиления Uвых max и минус Uвых max обычно отстоят приблизительно на 1-3 В от соответствующих значений положительного и отрицательного напряжений питания. При работе операционного усилителя с напряжением питания (плюс 15 – минус 15) В обычно область усиления по выходному напряжению составляет (плюс 12 – минус 12) В. Хотя есть ОУ границы Uвых max и Uвых min которых совпадают с напряжением питания.

· Напряжение смещения нуля . Из соотношения Uвых = К0۰Uд следует, что амплитудная (или передаточная) характеристика идеального операционного усилителя должна проходить через нулевую точку. Однако, для реальных операционных усилителей эта характеристика несколько смещена относительно начала координат влево (или вправо), как показано на рисунке 3. Чтобы сделать выходное напряжение равным нулю, необходимо подать на вход операционного усилителя некоторое напряжение. Это напряжение называется напряжением смещения нуля Uсм. Оно составляет обычно несколько милливольт и во многих случаях может не приниматься во внимание. Когда же этой величиной пренебречь нельзя, она может быть сведена к нулю применением специальных методов.

· Коэффициент усиления синфазного сигнала. Если на оба входа ОУ подать одно и то же напряжение U+ = U , то Uд =0. Выходное напряжение Uвых также должно остаться равным нулю. Однако, для реальных дифференциальных усилителей это не соответствует действительности, т. е. коэффициент усиления синфазного сигнала Ксин=DUвых/D(U+=U–) не строго равен нулю. Более того, как видно из рисунка 4, при достаточно больших значениях входного синфазного сигнала он резко возрастает. Неидеальность операционного усилителя характеризуется параметром, называемым коэффициентом ослабления синфазного сигнала Ккосс= Ко/Ксин. Его типичные значения составляют 104-105. Коэффициент усиления дифференциального сигнала по определению всегда положителен. Этого, однако, нельзя сказать о коэффициенте усиления синфазного сигнала Ксин. Он может принимать как положительные, так и отрицательные значения.

Рисунок 4 – Зависимость выходного напряжения ОУ от синфазного входного сигнала

В справочных таблицах обычно приводятся абсолютные значения величины Ккосс. В формулах же величина Ккосс используется с учетом ее фактического знака.

· Амплитудно-частотная характеристика операционного усилителя . На рисунке 5 представлена типичная частотная характеристика дифференциального коэффициента усиления операционного усилителя.

Рисунок 5 –Амплитудно-частотная характеристика операционного усилителя

В комплексной записи дифференциальный коэффициент усиления такого усилителя выражается следующей формулой Здесь Ко – предельное значение К на нижних частотах без цепей обратной связи ОУ. Выше частоты fво, соответствующей границе полосы пропускания на уровне 3 дБ, модуль коэффициента усиления К обратно пропорционален частоте. Таким образом, в этом диапазоне частот выполняется соотношение К=Ко/f На частоте fT модуль дифференциального коэффициента усиления К=1.

· Входное сопротивление. Реальные операционные усилители имеют конечную величину входного сопротивления. Различают входное сопротивление для дифференциального сигнала и входное сопротивление для синфазного сигнала. Их действие иллюстрируется схемой замещения входного каскада операционного усилителя, представленной на рисунке 6.

Рисунок 6 – Схема замещения операционного усилителя по входу

У операционных усилителей с биполярными транзисторами на входах входное сопротивление для дифференциального сигнала Rвх диф составляет несколько мегаОм, а входное сопротивление для синфазного сигнала Rвхcин несколько гигаОм. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Входное сопротивление синфазного сигнала – это сопротивление ОУ между двумя входами. Как правило, оно на 1–2 порядка больше входного сопротивления дифференциального сигнала

· Входные токи. Большое значение имеют постоянные токи, протекающие через входы операционного усилителя. Входной ток при отсутствии сигнала определяется по формуле . А входной ток смещения Для стандартных биполярных операционных усилителей начальный входной ток лежит в пределах от 20 до 200 нА, а для операционных усилителей с входными каскадами, выполненными на полевых транзисторах, он составляет всего несколько пикоампер.

· Полоса рабочих частот ОУ. Полоса частот ОУ зависит от наличия или отсутствия цепей обратной связи.

Рисунок 7 – Расширение рабочей полосы частот усилителя за счет действия обратной связи.

В связи с громадным значением коэффициента усиления операционного усилителя, как правило, в схемы устройств на ОУ вводят цепь отрицательной обратной связи. Благодаря этому полоса рабочих частот усилителя, охваченного обратной связью, расширяется (рисунок 7), так что произведение коэффициента усиления на ширину полосы для охваченного обратной связью усилителя равно частоте единичного усиления ОУ без обратной связи: fв = fТ/К.

1.6 Основные схемы включения ОУ

В основе анализа схем на операционных усилителях лежат два следующих предположения.

· Входы ОУ не потребляют тока и имеют очень большое сопротивление.

· Напряжение между неинвертирующим и инвертирующим входами ОУ под действием отрицательной обратной связи становится равным нулю (принцип виртуального замыкания).

Основываясь на этих предположениях, проведём анализ простейших усилительных схем на ОУ.

1.6.1 Инвертирующий усилитель

Схема инвертирующего усилителя показана на рисунке 8. Используя два указанных выше предположения, определим коэффициент усиления по напряжению и нвертирующего усилителя.

Рисунок 8 – Инвертирующий усилитель

Резисторы R1 и R2 образуют цепь параллельной отрицательной обратной связи по напряжению. Поэтому в соответствии с принципом виртуального замыкания разность потенциалов между входами ОУ становится очень малой. Поскольку неинвертирующий вход заземлен, то и на инвертирующем входе появляется потенциал близкий к нулю. При этом входной ток I1, протекающий по резистору R1, составит I1=U1/R1. Поскольку вход ОУ имеет очень большое сопротивление, то весь этот ток будет протекать по резистору R2, создавая падение напряжения U2 = U1 ۰ R2/R1. Здесь U1 = Uвх, U2 = Uвых. Поэтому коэффициент усиления по напряжению K оказывается равным К = –U2/U1. Таким образом К = – R 2 / R 1. Знак минус учитывает инверсию сигнала на выходе усилителя. Входное сопротивление усилителя Rвх = R1. Выходное сопротивление очень мало.

1.6.2 Неинвертирующий усилитель

Схема неинвертирующего усилителя показана на рисунке 9.

https://pandia.ru/text/78/378/images/image013_53.jpg" width="279" height="188 src=">

Рисунок 10 – Схема замещения ОУ с отрицательной обратной связью с учетом влияния напряжения смещения

1.7 Коррекция частотной характеристики ОУ

Рисунок 11 – Амплитудно-частотная и фазочастотная характеристики операционного усилителя (диаграмма Боде).

Выше частоты f2 начинает действовать второй фильтр нижних частот и коэффициент усиления уменьшается сильнее (наклон 40 дБ/декада), а фазовый сдвиг между Uд и Uвых достигает φ = –180°. Это означает, что отрицательная обратная связь, которая осуществлялась подачей части выходного напряжения на инвертирующий вход усилителя, в этой частотной области становится положительной. Как известно, если имеется такая частота, для которой фазовый сдвиг по цепи обратной связи становится равным нулю (условие баланса фаз), а коэффициент петлевого усиления | Kb | > 1 (условие баланса амплитуд), в такой усилительной системе могут возникнуть автоколебания. Усилитель прекращает выполнять свои функции, превратившись в генератор. Коэффициент b в этом соотношении является коэффициентом передачи цепи обратной связи. Таким образом, как для инвертирующего, так и для неинвертирующего усилителя он определяется как b=R1/(R1+R2).

Для предотвращения самовозбуждения при наличии отрицательной обратной связи в усилитель вводятся частотно-корректирующие цепь. Для этого соединяют через конденсатор выход и вход (коллектор и базу – для биполярного транзистора) одного из транзисторов, входящих в состав ОУ. Как правило, такая цепь изменяет амплитудно-частотную и фазочастотную характеристики операционного усилителя таким образом, что при https://pandia.ru/text/78/378/images/image016_44.jpg" width="313" height="232">

Рисунок 12 – Импульсные переходные характеристики операционного усилителя, охваченного обратной связью, при различных значениях запаса по фазе

Наряду со снижением полосы пропускания усилителя частотная коррекция дает еще один нежелательный эффект: скорость нарастания выходного напряжения становится при этом довольно малой величиной. Вследствие ограниченного значения этой величины при быстрых изменениях входного напряжения возникают характерные искажения сигнала, которые не могут быть устранены путем введения отрицательной обратной связи. Их называют динамическими искажениями. В частности, за счет недостаточной скорости изменения выходного сигнала с увеличением частоты начинает искажаться при большой амплитуде выходного сигнала сигнал синусоидальной формы. Часто при этом можно наблюдать, как сигнал синусоидальной формы превращается в сигнал пилообразной формы. В этом случае иногда говорят, что усилитель начал «пилить».

2 ЭКСПЕРИМЕНТ

2.1 Приборы и оборудование

2.1 Для проведения эксперимента используются следующие приборы и оборудование:

· Лабораторный макет «Линейные электрические цепи».

· Осциллограф двухканальный.

· Генератор гармонических сигналов низкочастотный.

· Два цифровых вольтметра.

· Соединительные провода и кабели.

Работу удобно выполнять на лабораторном макете «Линейные электрические цепи».

2.2 Лабораторный макет содержит:

§ Два блока операционных усилителей.

§ Блок источника питания.

§ Блок генераторов импульсов различной формы.

§ Набор линейных R, L, C элементов.

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

§ Выполните следующие задания:

3.1 Измерение напряжения смещения нуля операционного усилителя

Для этого:

3.1.1 Убедитесь, что питание лабораторного макета выключено.

3.1.2 Соберите электрическую схему, изображенную на рисунке 13.

https://pandia.ru/text/78/378/images/image018_35.jpg" width="24" height="25">.jpg" width="27" height="14">» на нуль (в левое крайнее положение).

· Подготовьте вольтметры для измерения переменного напряжения U~.

3.2.2 Соберите схему неинвертирующего усилителя на ОУ, изображенную на рисунке 14.

https://pandia.ru/text/78/378/images/image022_32.jpg" width="412" height="264">

Рисунок 15 – Схема установки для измерения АЧХ и АХ неинвертирующего усилителя на ОУ.

3.2.4 Проверьте правильность соединений.

3.2.5 Включите питание макета и генератора.

3.2.6 Измерьте амплитудно-частотную характеристику (АЧХ) неинвертирующего усилителя на ОУ в диапазоне частот от 100 Гц до 1МГц. Для этого установите начальную частоту на генераторе 100 Гц. При измерениях на входе усилителя поддерживайте напряжение U1 ≈ 100мВ ручкой регулятора напряжения генератора «https://pandia.ru/text/78/378/images/image023_61.gif" width="73" height="52">. Повторите эти измерения на частотах 316 Гц, 1 кГц, 3,16 кГц, 10 кГц, 31,6 кГц, 100 кГц, 316 кГц, 1МГц. На каждой частоте измеряйте новые значения напряжений U1 и U2 и вычисляйте Кu.

3.2.7 Снимите амплитудную характеристику (АХ) ОУ на низкой частоте. Для этого установите частоту сигнала генератора 1 кГц и изменяйте напряжение на генераторе.

Примечание. При измерении амплитудных характеристик в случае, если выходной сигнал синусоидального вида, форму которого нужно контролировать с помощью осциллографа, начинает ограничиваться, т. е. его амплитуда перестает расти при увеличении амплитуды входного сигнала, дальнейшее увеличение амплитуды входного сигнала не производить! ОУ может выйти из строя!

Каждый раз записывайте соответствующие пары входного и выходного напряжений. Результаты измерений представьте в виде графика зависимости U2 = f (U1). Снимите амплитудную характеристику (АХ) ОУ на высокой частоте. Для этого установите частоту сигнала генератора 1 МГц и изменяйте напряжение на генераторе. Результаты измерений представить в виде графиков зависимости U2 = f (U1).

3.2.8 Убедитесь, что на ОУ собрана схема неинвертирующего усилителя. Для этого получите на экране осциллографа неподвижное изображение входного и выходного сигналов и зарисуйте их.

3.2.9 Увеличьте коэффициент усиления ОУ. Для этого установите напряжение генератора равное 10 мВ, отключите лабораторный макет от сети и в схеме замените резистор R2 другим с номиналом 20 кОм.

3.2.10 Включите макет и снимите АЧХ, повторив измерения, аналогично пункту 3.2.6.

3.2.11 Результаты измерений АЧХ в обоих случаях представить в виде графиков в двойном логарифмическом масштабе, где по оси абсцисс в логарифмическом масштабе отложена частота, а по оси ординат коэффициент усиления в дБ Ku = Ku (lg f ). Перевод в децибелы осуществляется по формуле:

https://pandia.ru/text/78/378/images/image025_29.jpg" width="364" height="196 src=">

Рисунок 16 – Схема инвертирующего усилителя.

Рисунок 17 – Схема установки для измерения АЧХ и АХ инвертирующего усилителя.

3.3.3 Установите ручку регулятора напряжения генератора «» на нуль (в левое крайнее положение).

3.3.4 Включите измерительные приборы в сеть.

3.3.5 Ручкой регулятора напряжения установите «» на входе усилителя напряжение 100 мВ.

3.3.6 Снимите амплитудно-частотную характеристику инвертирующего усилителя, как в пункте 3.2.6.

3.3.7 На частотах 1 кГц и 1МГц снимите амплитудные характеристики (АХ) ОУ, как в пункте 3.2.7. Результаты измерений представить в виде графиков зависимости U2 = f (U1).

3.3.8 Убедитесь, что на ОУ собрана схема инвертирующего усилителя. Для этого получите на экране осциллографа неподвижное изображение входного и выходного сигналов и зарисуйте их.

3.3.9 Выключите макет.

3.3.10 Увеличьте коэффициент усиления ОУ. Для этого, установите напряжение генератора равное 10 мВ, а резистор R2 замените резистором с номиналом 20 кОм.

3.3.11 Включите макет и снимите АЧХ, повторив измерения, аналогично пункту 3.2.6, но при U1 = 10 мВ. Результаты измерений АЧХ представить в виде графика в двойном логарифмическом масштабе Ku = Ku (lg f ).

3.3.12 Выполните на частотах 1 кГц и 1 МГц измерения амплитудной характеристики инвертирующего усилителя, изменяя напряжение на генераторе, как в пункте 3.2.7. Результаты измерений представьте в виде графиков зависимости U2 = f (U1).

3.4 Измерение максимальной скорости нарастания выходного напряжения инвертирующего усилителя

Для этого:

3.4.1 Убедитесь, что питание макета выключено.

3.4.2 Соберите схему, изображённую на рисунок 18.

3.4.3 Ручку регулятора напряжения генератора «» установите в левое крайнее положение и переведите генератор в режим генерации прямоугольных импульсов (тумблер в положении «https://pandia.ru/text/78/378/images/image029_25.jpg" width="362" height="190 src=">

Рисунок 18 – Схема ОУ с разделительным конденсатором на входе.

3.4.4 Подключите к входу усилителя генератор и 1-й канал осциллографа, а к выходу усилий канал осциллографа в соответствии со схемой, изображенной на рисунке Включите питание макета.

3.4.5 На частоте 100 кГц увеличивайте напряжение генератора. С помощью двухканального осциллографа наблюдайте за формой сигналов на входе и на выходе схемы. Напряжение генератора увеличивайте до тех пор, пока амплитуда сигнала на выходе перестанет зависеть от амплитуды сигнала на входе. Зарисуйте осциллограммы входного и выходного сигналов. По осциллограмме выходного сигнала определите скорость нарастания выходного напряжения.

3.5 Измерение частотных характеристик максимальной амплитуды неискаженного выходного сигнала инвертирующего усилителя.

Для этого:

3.5.1 Ручку регулятора напряжения генератора «» установите в левое крайнее положение и переведите генератор в режим генерации сигналов гармонического типа (тумблер в положении « ~ »).

3.5.2 Воспользуйтесь схемой, изображённой на рисунке 19.

3.5.3 Выполните измерения зависимости максимальной амплитуды неискаженного выходного сигнала U2max инвертирующего усилителя от частоты в диапазоне от 1 кГц до 1 МГц..jpg" width="438" height="278">

Рисунок 19 – Схема для измерения максимальной скорости нарастания выходного напряжения и определения частотной зависимости максимальной амплитуды неискаженного выходного сигнала.

Итогом работы является набор амплитудно-частотных и амплитудных характеристик и осциллограмм, снятых для ОУ, работающего в качестве инвертирующего и неинвертирующего усилителя при различных коэффициентах усиления, а так же частотные характеристики максимальной амплитуды неискаженного выходного сигнала и результаты измерения максимальной скорости нарастания выходного напряжения инвертирующего усилителя.

Отчет должен содержать:

Название и цель работы;

Краткую теорию;

Схемы исследуемых усилителей;

Графики амплитудно-частотных характеристик инвертирующего и неинвертирующего усилителей при различных коэффициентах усиления;

Графики амплитудных характеристик инвертирующего и неинвертирующего усилителей на низких и высоких частотах;

Осциллограммы входного и выходного сигналов инвертирующего и неинвертирующего усилителей;

Частотные характеристики максимальной амплитуды неискаженного выходного сигнала инвертирующего усилителя;

Результаты измерения максимальной скорости нарастания выходного напряжения инвертирующего усилителя;.

Выводы по выполненным исследованиям.

Графики выполняются на миллиметровой бумаге либо с помощью компьютера.

5 Контрольные вопросы

1) Определение операционного усилителя.

2) Схема и основные соотношения для неинвертирующего усилителя на ОУ.

3) Схема и основные соотношения для инвертирующего усилителя на ОУ.

4) Основные параметры и характеристики ОУ.

5) Понятие об идеальном ОУ.

6) Условия, при которых реальный ОУ можно считать идеальным.

7) Амплитудная характеристика ОУ и параметры ОУ определяемые по ней.

8) Амплитудно-частотная характеристика ОУ и параметры ОУ определяемые по ней.

9) Какими мерами можно обеспечить устойчивость работы ОУ с глубокой обратной связью.

10) Диаграммы Боде.

11) В чем заключаются достоинства ОУ, благодаря которым они широко применяются в радиоэлектронике.

ЛИТЕРАТУРА

Основная:

1 Шило интегральные схемы. – М.: Сов. Радио, 1974. – 311 с.

2 Манаев радиоэлектроники: учеб. для вузов. – М.: Сов. Радио, 1976. – 479 с.

3 Полупроводниковая схемотехнике.- М. Мир, 1982. – 512 с.

4 Искусство схемотехники. Т.1. - М. Мир, 1993. – 412 с.

5 Нефёдов радиоэлектроники: учеб. для вузов. – М.: В. Ш., 2000 – 398 с.

Дополнительная:

6 Рубинштейн. практикум по ядерной электронике: метод. пособие. www. npi. msu. su/structinc/lib/books/nuc_el/p7.

7 Тогатов электроники: электронный учебник. Версия: 1. СПбГУ ИТМО. - de. *****/bk_netra/start. php? bn=36.

8 , Войшвилло усилители и их применение.

www. *****/cgibin/db. pl? cp=&page=Book&id=14464&lang=Ru&blang=ru&list=83.

9 Общие сведения об операционных усилителях. - *****/main/rc/?ou01